next up previous
: Refelction and Transmission : Maxwell Equation : Wave Equations

Boundary conditions at interfaces between different media

Now we think a interface which is the boundary medium 1 and 2 as shown in Fig.1. From Gauss law, we can get the following for the Gauss box which include the interface inside the box,

\begin{displaymath}
\int_V d{\bf r} \underbrace{\nabla\cdot{\bf D}}_{\rho}
= \int_S {\bf D}\cdot d{\bf S}
\end{displaymath} (38)

In the limit that the Gauss box is very thin
\begin{displaymath}
\int_V d{\bf r} \rho =Q_{\rm box} =
{\bf n} \cdot [ {\bf D}_1 - {\bf D}_2 ] S
\end{displaymath} (39)

where vector ${\bf n}$ means the unit vector pointing from media 1 to 2.
\begin{displaymath}
{\bf n} \cdot [ {\bf D}_1 - {\bf D}_2 ] = Q_{\rm box}/S
= \sigma_{12}
\end{displaymath} (40)

From $\nabla \cdot {\bf B} = 0$
\begin{displaymath}
{\bf n} \cdot [ {\bf B}_1 - {\bf B}_2 ] = 0
\end{displaymath} (41)

Stokes theorem: In Fig.1.3

$\displaystyle \oint {\bf V}\cdot d{\bf r}$ $\textstyle =$ $\displaystyle ({\rm I}) + ({\rm II}) + ({\rm III}) + ({\rm IV})$  
  $\textstyle =$ $\displaystyle V_x (x_0, y_0 )dx + V_y (x_0+dx, y_0 )dy + V_x (x_0 , y_0 + dy) (-dx)
+ V_y (x_0, y_0)(-dy)$  
  $\textstyle =$ $\displaystyle V_x (x_0, y_0 )dx + [V_y (x_0, y_0 ) + \frac{\partial V_y}{\partial x}dx ]dy$  
    $\displaystyle - [V_x (x_0, y_0 ) + \frac{\partial V_x}{\partial y}dy ]dx -
V_y (x_0, y_0 )dy$  
  $\textstyle =$ $\displaystyle \left( \frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y}
\right) dx dy = ({\rm rot}{\bf V})_z dxdy$  

図 1: Gauss and Stokes box
\includegraphics[width=12cm]{gauss_stokes_box.eps}

図 2: Stokes theorem
\includegraphics[width=10cm]{stokes.eps}

From Eq.3

$\displaystyle \oint_C {\bf E}\cdot d{\bf r}$ $\textstyle =$ $\displaystyle \int_S {\rm rot}{\bf E}\cdot d{\bf S}$ (42)
  $\textstyle =$ $\displaystyle - \int_S \frac{\partial {\bf B}}{\partial t}\cdot {\bf b} dS$ (43)
$\displaystyle \delta r [{\bf E}_1 \cdot {\bf t}_1 + {\bf E}_2 \cdot {\bf t}_2 ]$ $\textstyle =$ $\displaystyle - \frac{\partial {\bf B}}{\partial t}\cdot {\bf b} \delta r \delta h \longrightarrow 0$ (44)
$\displaystyle {\bf t}$ $\textstyle =$ $\displaystyle {\bf t}_1 = -{\bf t}_2$ (45)
$\displaystyle {\bf t}\cdot [{\bf E}_1 - {\bf E}_2 ]$ $\textstyle =$ $\displaystyle 0$ (46)

From Eq.4
$\displaystyle \oint_C {\bf H}\cdot d{\bf r}$ $\textstyle =$ $\displaystyle \int_S {\rm rot}{\bf H}\cdot d{\bf S}$ (47)
  $\textstyle =$ $\displaystyle \int_S \left( {\bf J} + \frac{\partial {\bf D}}{\partial t}\right)
\cdot {\bf b} dS$ (48)
$\displaystyle \delta r [{\bf H}_1 \cdot {\bf t}_1 + {\bf H}_2 \cdot {\bf t}_2 ]$ $\textstyle =$ $\displaystyle \left( {\bf J} + \frac{\partial {\bf D}}{\partial t}\right) \cdot {\bf b} \delta r \delta h
\longrightarrow {\bf J}\cdot{\bf b}\delta r \delta h$ (49)
$\displaystyle {\bf t}\cdot [{\bf H}_1 - {\bf H}_2 ]$ $\textstyle =$ $\displaystyle {\bf J}_s \ \ \ [\equiv {\rm surface \
current \ density} ({\rm Am}^{-1})]$ (50)


next up previous
: Refelction and Transmission : Maxwell Equation : Wave Equations
Yamamoto Masahiro 平成14年8月30日