next up previous
: Boundary conditions at interfaces : Maxwell Equation : Energy Conservation

Wave Equations

From Eq.3 and Eq.6

\begin{displaymath}
{\rm rot} {\bf E} = - \mu \mu_0 \frac{\partial {\bf H}}{\partial t}
\end{displaymath} (13)

From Eqs.4, 5, 7
\begin{displaymath}
{\rm rot} {\bf H} = \sigma {\bf E} + \epsilon \epsilon_0
\frac{\partial {\bf E}}{\partial t}
\end{displaymath} (14)

If we apply $\nabla \times $ to Eq.13 and $\partial /\partial t$ to Eq.14 and using the relation
$\displaystyle \nabla \times \nabla \times {\bf E}$ $\textstyle =$ $\displaystyle {\rm rot} \left\vert
\begin{array}{ccc}
{\bf i} & {\bf j} & {\bf ...
...rtial E_y}{\partial x} - \frac{\partial E_x}{\partial y}
\end{array}\right\vert$  
  $\textstyle =$ $\displaystyle {\bf i} \left[ \frac{\partial^2 E_y}{\partial x \partial y} -
\fr...
...frac{\partial ^2 E_z}{\partial x \partial z}\right] + {\bf j}[..] + {\bf k}[..]$  
  $\textstyle =$ $\displaystyle {\bf i}\frac{\partial }{\partial x}\left(
\frac{\partial E_x}{\pa...
...rtial y}
{\rm div}{\bf E}
+ {\bf k}\frac{\partial }{\partial z}{\rm div}{\bf E}$  
    $\displaystyle - {\bf i}\nabla^2 E_x - {\bf j}\nabla^2 E_y - {\bf k}\nabla^2 E_z$  
  $\textstyle =$ $\displaystyle {\rm grad}({\rm div}{\bf E}) - \nabla^2 {\bf E}$ (15)

If we assume $\rho =0$, ${\rm div}{\bf E} = 0$ then
\begin{displaymath}
\nabla^2 {\bf E} = \sigma \mu \mu_0 \frac{\partial {\bf E}}{...
...0 \epsilon \epsilon_0 \frac{\partial^2 {\bf E}}{\partial t^2}
\end{displaymath} (16)

In the same way we can get
\begin{displaymath}
\nabla^2 {\bf H} = \sigma \mu \mu_0 \frac{\partial {\bf H}}{...
...0 \epsilon \epsilon_0 \frac{\partial^2 {\bf H}}{\partial t^2}
\end{displaymath} (17)

In the case that the electric field is plane wave

\begin{displaymath}
{\bf E} = {\bf E}_0 e^{i({\bf k}\cdot{\bf r} - \omega t)}
\end{displaymath} (18)

then
\begin{displaymath}
k^2 = i\sigma \mu \mu_0 \omega + \mu \mu_0 \epsilon \epsilon_0 \omega^2
\end{displaymath} (19)

In vacuum, $\epsilon =1, \mu =1, \sigma = 0$ and $c / \nu = \lambda, c/\omega = \lambda/(2\pi ),
k = 2\pi/ \lambda = \omega /c$ then

\begin{displaymath}
c = 1/\sqrt{\mu_0 \epsilon_0 }
\end{displaymath} (20)

If we define the comlex optical index $\tilde{n}$ by

\begin{displaymath}
k = \frac{2\pi}{\lambda } = \frac{\omega}{v} = \frac{\tilde{n}\omega}{c}
\end{displaymath} (21)


\begin{displaymath}
\tilde{n}^2 = k^2 c^2 /\omega^2 = \mu \epsilon + i \frac{\sigma \mu }{\epsilon_0 \omega }
\end{displaymath} (22)

1

If we take divergence of electic filed in the form of plane wave.

$\displaystyle {\rm div} {\bf E}$ $\textstyle =$ $\displaystyle \left( {\bf i}\frac{\partial }{\partial x}
+ {\bf i}\frac{\partia...
...\bf i} + E_{0y}{\bf j} + E_{0z}{\bf k} )e^{i(k_x x + k_y y + k_z z - \omega t)}$ (28)
  $\textstyle =$ $\displaystyle i ( k_x E_{0x} + k_y E_{0y} + k_z E_{0z} ) = i{\bf k}\cdot{\bf E}_0$ (29)
  $\textstyle =$ $\displaystyle 0$ (30)

Then the electric field is transverse wave.

If the magnetic-flux density ${\bf B}$ is written as

\begin{displaymath}
{\bf B} = \frac{{\bf k}\times {\bf E}_0 }{\omega} e^{i({\bf k}\cdot{\bf r} - \omega t)},
\end{displaymath} (31)

the magnetic-flux density satisfies Eq.3, because
$\displaystyle {\rm rot} {\bf E}$ $\textstyle =$ $\displaystyle {\bf i}(\frac{\partial E_z }{\partial y} -
\frac{\partial E_y}{\partial z}) + ..$ (32)
  $\textstyle =$ $\displaystyle {\bf i}(ik_y E_z - ik_z E_y) + ..$ (33)
  $\textstyle =$ $\displaystyle i{\bf k}\times {\bf E}$ (34)
$\displaystyle - \frac{\partial {\bf B}}{\partial t}$ $\textstyle =$ $\displaystyle - \frac{{\bf k}\times {\bf E}_0}{\omega}
(-i \omega) e^{i({\bf k}\cdot{\bf r} - \omega t)}$ (35)
  $\textstyle =$ $\displaystyle i{\bf k}\times {\bf E}$ (36)

In vacuum

\begin{displaymath}
\frac{\vert{\bf E}_0 \vert}{\vert{\bf H}_0\vert} = \frac{\mu...
...u_0} \omega} = \sqrt{\frac{\mu_0}{\epsilon_0}}
= 376.7 \Omega
\end{displaymath} (37)


next up previous
: Boundary conditions at interfaces : Maxwell Equation : Energy Conservation
Yamamoto Masahiro 平成14年8月30日