next up previous
: Wave Equations : Maxwell Equation : Maxwell Equation

Energy Conservation

The equation of motion of point charges is
$\displaystyle m_i \ddot{{\bf r}}_i$ $\textstyle =$ $\displaystyle \int d{\bf r}
\left\{ e_i \delta({\bf r}- {\bf r}_i (t)) {\bf E} +
e_i \delta({\bf r}- {\bf r}_i (t)) \dot{{\bf r}}_i \times{\bf B}\right\}$  
$\displaystyle {\rm If \ we \ apply} (\sum_i {\bf v}_i\cdot ) \ {\rm from \ the \ left},$   $\displaystyle \ {\rm Here} \ {\bf v}_i = \dot{{\bf r}_i}$  
$\displaystyle \sum_i m_i {\bf v}_i \cdot \dot{{\bf v}}_i$ $\textstyle =$ $\displaystyle \sum_i
\int d{\bf r}
\left\{ e_i \delta({\bf r}- {\bf r}_i (t)) {...
...r}_i (t))
\underbrace{
{\bf v}_i\cdot [ {\bf v}_i\times{\bf B}]
}_{=0} \right\}$  
  $\textstyle =$ $\displaystyle \sum_i
\int d{\bf r}
e_i \delta({\bf r}- {\bf r}_i (t)) {\bf v}_i\cdot {\bf E}$ (8)

From
$\displaystyle {\bf J}$ $\textstyle =$ $\displaystyle \sum_i e_i \dot{{\bf r}}_i (t) \delta ({\bf r} - {\bf r}_i (t))$ (9)
  $\textstyle =$ $\displaystyle {\rm rot}{\bf H} - \frac{\partial {\bf D}} {\partial t}$ (10)

Then
$\displaystyle \sum_i \frac{d}{dt}\left( \frac{1}{2}m_i {\bf v}_i^2 \right)$ $\textstyle =$ $\displaystyle \int d{\bf r} \left( {\rm rot}{\bf H} - \frac{\partial {\bf D}}{\partial t}\right)
\cdot {\bf E}$ (11)
$\displaystyle \frac{1}{2}\frac{\partial }{\partial t} ({\bf E}\cdot{\bf D}+{\bf B}\cdot{\bf H})$ $\textstyle =$ $\displaystyle {\bf E}\cdot\frac{\partial {\bf D}}{\partial t}
+ {\bf H}\cdot\frac{\partial {\bf B}}{\partial t}$  
  $\textstyle =$ $\displaystyle {\bf E}\cdot\frac{\partial {\bf D}}{\partial t}
- {\bf H}\cdot{\rm rot}{\bf E}$  
$\displaystyle \frac{d}{dt} \left( \sum_i \frac{1}{2} m_i {\bf v}_i^2 \right)$ $\textstyle =$ $\displaystyle \int d{\bf r}\left[-\frac{1}{2}\frac{\partial }{\partial t}
({\bf E}\cdot{\bf D}+{\bf B}\cdot{\bf H}) \right.$  
    $\displaystyle \left. \underbrace{
- {\bf H}\cdot{\rm rot}{\bf E}
+{\bf E}\cdot{\rm rot}{\bf H}
}_{ = - {\rm div} ({\bf E}\times{\bf H}) } \right]$  
$\displaystyle \frac{d}{dt}
\left[
\underbrace{\sum_i \frac{1}{2}m_i {\bf v}_i^2...
...B}\cdot{\bf H})
}_{{\rm total \ energy \ of \ electromagnetic \ field}} \right]$ $\textstyle =$ $\displaystyle - \int dS \underbrace{[{\bf E}\times{\bf H}]}_{{\rm Poynting \ Vector}}
\cdot {\bf n}$ (12)

The Poynting vector means the energy flux going out from the system.


next up previous
: Wave Equations : Maxwell Equation : Maxwell Equation
Yamamoto Masahiro 平成14年8月30日