next up previous
: Energy Conservation : Surface Plasmon Resonance (SPR) : Surface Plasmon Resonance (SPR)

Maxwell Equation

The Maxwell equations are described

$\displaystyle {\rm div} {\bf D}$ $\textstyle =$ $\displaystyle \rho$ (1)
$\displaystyle {\rm div} {\bf B}$ $\textstyle =$ $\displaystyle 0$ (2)
$\displaystyle {\rm rot} {\bf E}$ $\textstyle =$ $\displaystyle - \frac{\partial {\bf B}}{\partial t}$ (3)
$\displaystyle {\rm rot} {\bf H}$ $\textstyle =$ $\displaystyle {\bf J} + \frac{\partial {\bf D}}{\partial t}$ (4)

The electric field ${\bf E}$ (Vm$^{-1}$) and magnetic field ${\bf H}$ (Am$^{-1}$) are related to the electric displacement (or dielectric flux density or electric flux density) ${\bf D}$ (Cm$^{-2}$) and magnetic-flux density (or magnetic induction) ${\bf B}$ (T:tesla = NA$^{-1}$m$^{-1}$)
$\displaystyle {\bf D}$ $\textstyle =$ $\displaystyle \epsilon \epsilon_0 {\bf E}$ (5)
$\displaystyle {\bf B}$ $\textstyle =$ $\displaystyle \mu \mu_0 {\bf H}$ (6)

Here $\epsilon$ and $\epsilon_0$ are the dielectric constant (no dimension) and electric permittivity of free space [8.854187817 $\times 10^{-12}$ Fm$^{-1}$ (= CV$^{-1}$m$^{-1}$)], respectively and $\mu$ and $\mu_0 $ are magnetic permeability (no dimension) and magnetic permeability of free space ( $4\pi \times 10^{-7}$ NA$^{-2}$), rspectively. We can assume the Ohm's law for the current ${\bf J}$ and the electric field
\begin{displaymath}
{\bf J} = \sigma {\bf E}
\end{displaymath} (7)




next up previous
: Energy Conservation : Surface Plasmon Resonance (SPR) : Surface Plasmon Resonance (SPR)
Yamamoto Masahiro 平成14年8月30日