next up previous
: Condition III: : Refelction and Transmission : Condition I:

Condition II: ${\bf n}\cdot ({\bf B}_1 - {\bf B}_2 )=0$

For the boundary consdition in Eq.41
$\displaystyle {\bf k} \times {\bf E}_0$ $\textstyle =$ $\displaystyle \left\vert
\begin{array}{ccc}
{\bf i} & {\bf j} & {\bf k} \\
k\s...
...& k\cos\theta \\
E_p \cos\theta & E_s & -E_p \sin\theta
\end{array}\right\vert$  
  $\textstyle =$ $\displaystyle k[ -{\bf i}E_s \cos\theta +{\bf j} (E_p\cos^2\theta + E_p
\sin^2\theta ) + {\bf k}E_s \sin\theta ]$ (69)
$\displaystyle \omega{\bf B} = {\bf k} \times {\bf E}_0$ $\textstyle =$ $\displaystyle \left( \begin{array}{c}
-kE_s \cos\theta \\  kE_p \\  kE_s \sin\theta \end{array}\right)$ (70)


$\displaystyle {\bf k}' \times {\bf R}_0$ $\textstyle =$ $\displaystyle \left\vert
\begin{array}{ccc}
{\bf i} & {\bf j} & {\bf k} \\
k\s...
...-k\cos\theta \\
-R_p \cos\theta & R_s & -R_p \sin\theta
\end{array}\right\vert$  
  $\textstyle =$ $\displaystyle k[ {\bf i}R_s \cos\theta +{\bf j} (R_p\cos^2\theta + R_p
\sin^2\theta ) + {\bf k}R_s \sin\theta ]$ (71)
$\displaystyle \omega{\bf B}' = {\bf k}' \times {\bf R}_0$ $\textstyle =$ $\displaystyle \left( \begin{array}{c}
kR_s \cos\theta \\  kR_p \\  kR_s \sin\theta \end{array}\right)$ (72)


$\displaystyle {\bf k}'' \times {\bf T}_0$ $\textstyle =$ $\displaystyle \left\vert
\begin{array}{ccc}
{\bf i} & {\bf j} & {\bf k} \\
k''...
...s\theta'' \\
T_p \cos\theta'' & T_s & -T_p \sin\theta''
\end{array}\right\vert$  
  $\textstyle =$ $\displaystyle k'' [ -{\bf i}T_s \cos\theta'' +{\bf j} (T_p\cos^2\theta + T_p
\sin^2\theta'' ) + {\bf k}T_s \sin\theta'' ]$ (73)
$\displaystyle \omega{\bf B}'' = {\bf k}'' \times {\bf T}_0$ $\textstyle =$ $\displaystyle \left( \begin{array}{c}
-k'' T_s \cos\theta'' \\  k'' T_p \\  k'' T_s \sin\theta'' \end{array}\right)$ (74)

The boundary condition $B_z + B'_z = B''_z$ becomes

$\displaystyle \frac{k\sin\theta}{\omega} ( E_s + R_s) e^{i(k\sin\theta x - \omega t)}$ $\textstyle =$ $\displaystyle \frac{k'' \sin\theta'' }{\omega} T_s e^{i(k'' \sin\theta'' x - \omega t)}$ (75)
$\displaystyle \tilde{n_1}(E_s + R_s ) \sin\theta$ $\textstyle =$ $\displaystyle \tilde{n_2}T_s \sin\theta''$ (76)
$\displaystyle E_s + R_s$ $\textstyle =$ $\displaystyle T_s$ (77)

We used the Snell's law in the last equation. This equation is the same as Eq.68.


next up previous
: Condition III: : Refelction and Transmission : Condition I:
Yamamoto Masahiro 平成14年8月30日