next up previous
: Surface Plasmon : Refelction and Transmission : phase shift

Metal Surface

For the metal surface the optical index becomes
\begin{displaymath}
\tilde{n}_2 = n_2 + i\kappa_2, \ \ k'' =\tilde{n}_2 \omega/c = (n_2 + i\kappa_2 )\omega/c
\end{displaymath} (135)

From the condition I,

$\displaystyle n_1 \sin\theta$ $\textstyle =$ $\displaystyle \tilde{n}_2\sin\theta'' = (n_2 + i \kappa_2)\sin\theta''$ (136)
    $\displaystyle {\rm now} \ \theta'' \ {\sf is \ complex, \ and \ we\ define \ (Born \ Wolf,\
Principles \ of\ Optics, \ 6th \ ed.)}$  
$\displaystyle \tilde{n}_2 \cos\theta''$ $\textstyle \equiv$ $\displaystyle u_2 + i v_2, \ \ \ \ \ {\rm Here \ }u_2 \
{\rm and} v_2 \ {\rm are \ real.}$ (137)
$\displaystyle (u_2 + i v_2)^2$ $\textstyle =$ $\displaystyle \tilde{n}_2^2 \cos^2\theta'' =
\tilde{n}_2^2 ( 1- \frac{n_1^2}{\tilde{n}_2^2}\sin^2\theta ) =
\tilde{n}_2^2 - n_1^2 \sin^2\theta$ (138)

For the real and imaginary parts
$\displaystyle u_2^2 - v_2^2$ $\textstyle =$ $\displaystyle n_2^2 - \kappa_2^2 -n_1^2 \sin\theta^2$ (139)
$\displaystyle 2u_2 v_2$ $\textstyle =$ $\displaystyle 2n_2 \kappa_2$ (140)

Then we can get
$\displaystyle u_2^2$ $\textstyle =$ $\displaystyle \frac{n_2^2 - \kappa_2^2 - n_1^2 \sin^2\theta +
\sqrt{(n_2^2 - \kappa_2^2 - n_1^2 \sin^2\theta)^2 + 4n_2^2 k_2^2}}{2}$ (141)
$\displaystyle v_2^2$ $\textstyle =$ $\displaystyle \frac{- (n_2^2 - \kappa_2^2 - n_1^2 \sin^2\theta) +
\sqrt{(n_2^2 - \kappa_2^2 - n_1^2 \sin^2\theta)^2 + 4n_2^2 k_2^2}}{2}$ (142)

For p wave,

$\displaystyle r_p$ $\textstyle =$ $\displaystyle \rho_p e^{i\phi_p} = \frac{\tilde{n}_2 \cos\theta - n_1 \cos\thet...
...de{n}_2\cos\theta'' }
{\tilde{n}_2^2 \cos\theta + n_1\tilde{n}_2 \cos\theta'' }$ (143)
  $\textstyle =$ $\displaystyle \frac{ (n_2^2 - \kappa_2^2 + 2in_2\kappa_2) \cos\theta - n_1 (u_2 + i v_2) }
{(n_2^2 - \kappa_2^2 + 2in_2\kappa_2) \cos\theta + n_1 (u_2 + iv_2 )}$ (144)
$\displaystyle \rho_p ^2$ $\textstyle =$ $\displaystyle \left\vert \frac{ (n_2^2 - \kappa_2^2)\cos\theta -n_1 u_2
+ i (2 ...
...2^2)\cos\theta + n_1 u_2 + i (2n_2\kappa_2 \cos\theta + n_1v_2 )}
\right\vert^2$ (145)
  $\textstyle =$ $\displaystyle \frac{ [(n_2^2 - \kappa_2^2)\cos\theta -n_1 u_2]^2
+ (2 n_2\kappa...
... - \kappa_2^2)\cos\theta + n_1 u_2 ]^2 + (2n_2\kappa_2 \cos\theta + n_1v_2 )^2}$ (146)
$\displaystyle \tan \phi_p$ $\textstyle =$ $\displaystyle \frac{[(n_2^2 - \kappa_2^2) \cos\theta + n_1 u_2]
(2n_2\kappa_2 \...
...2)^2 \cos^2\theta - n_1^2 u_2^2
+ 4 n_2^2 \kappa_2^2 \cos\theta - n_1^2 v_2^2 }$  
  $\textstyle =$ $\displaystyle 2n_2\cos\theta \frac{2n_2u_2\kappa_2 - ( n_2^2 - k_2^2 ) v_2}{(n_2^2 + \kappa_2^2)^2 \cos^2\theta -n_1^2 (u_2^2 + v_2^2)}$ (147)
$\displaystyle t_p$ $\textstyle =$ $\displaystyle \tau_p e^{i\chi_p} = \frac{2n_1 \cos\theta}
{n_1 \cos\theta'' + \...
...ilde{n}_2 \cos\theta}
{n_1\tilde{n}_2 \cos\theta'' + \tilde{n}_2^2 \cos\theta }$ (148)
  $\textstyle =$ $\displaystyle \frac{2n_1 n_2 \cos\theta + i 2n_1 \kappa_2 \cos\theta}{n_1 u_2 +
(n_2^2 - \kappa_2^2 )\cos\theta + i(n_1 v_2 + 2n_2 \kappa_2 \cos\theta )}$ (149)
$\displaystyle \tau_p^2$ $\textstyle =$ $\displaystyle 4n_1^2 \cos^2\theta
= \frac{n_2^2 + \kappa_2^2 }
{[n_1 u_2 + (n_2^2 - \kappa_2^2 )\cos\theta]^2 + (n_1 v_2 + 2n_2 \kappa_2 \cos\theta )^2}$ (150)
$\displaystyle \tan\chi_p$ $\textstyle =$ $\displaystyle 2n_1\cos\theta \frac{n_1\kappa_2 u_2 + \kappa_2
(n_2^2 - \kappa_2...
... (n_2^2 - \kappa_2^2)\cos\theta +
n_1\kappa_2 v_2 + 2n_2\kappa_2^2 \cos\theta]}$ (151)

The $t_p$ in the book "Born and Wolf, Principles of Optics (6th ed)" p.630 may be wrong.

For s wave

$\displaystyle r_s$ $\textstyle =$ $\displaystyle \rho_s e^{i\phi_s} = \frac{n_1 \cos\theta - \tilde{n}_2 \cos\thet...
...heta'' } =
\frac{n_1 \cos\theta - (u_2 + iv_2 )}
{n_1 \cos\theta + u_2 + iv_2 }$ (152)
$\displaystyle \rho_s^2$ $\textstyle =$ $\displaystyle \left\vert \frac{n_1 \cos\theta - u_2 - iv_2 }
{n_1 \cos\theta + ...
... \frac{ (n_1 \cos\theta - u_2)^2 + v_2^2 }
{ (n_1 \cos\theta + u_2)^2 + v_2^2 }$ (153)
$\displaystyle \tan\phi_s$ $\textstyle =$ $\displaystyle \frac{ -2v_2 n_1\cos\theta }{n_1^2 \cos^2\theta - u_2^2 - v_2^2 }$ (154)
$\displaystyle t_s$ $\textstyle =$ $\displaystyle \tau_s e^{i\chi_s} = \frac{2n_1 \cos\theta }
{n_1 \cos\theta + \tilde{n}_2 \cos\theta''} =
\frac{2n_1 \cos\theta }
{n_1 \cos\theta + u_2 + i v_2}$ (155)
$\displaystyle \tau_s^2$ $\textstyle =$ $\displaystyle \left\vert\frac{2n_1 \cos\theta }
{n_1 \cos\theta + u_2 + i v_2}\right\vert^2 =
\frac{4n_1^2 \cos^2\theta}{( n_1 \cos\theta + u_2 )^2 +v_2^2}$ (156)
$\displaystyle \tan\chi_s$ $\textstyle =$ $\displaystyle -\frac{2v_2n_1\cos\theta}{2n_1^2\cos^2\theta + 2u_2 n_1\cos\theta}
= -\frac{v_2}{n_1\cos\theta + u_2}$ (157)

The above equations may be OK, but please check these by Maple or Mathmatica if you will use them.

For the He-Ne laser (632.8 nm) the refelction from gold surface ( $n=0.181, k=2.99$) please see Fig.7. For the IR light ( 3100 nm) the refelction from gold surface ( $n=1.728, k=19.2$) please see Fig. 8.

図 7: He-Ne laser from air to Au
図 8: IR light from air to Au
\includegraphics[width=8cm]{air2au_ref_HeNe.eps} \includegraphics[width=8cm]{air2au_refphase_HeNe.eps} \includegraphics[width=8cm]{air2au_ref_IR.eps} \includegraphics[width=8cm]{air2au_refphase_IR.eps}


next up previous
: Surface Plasmon : Refelction and Transmission : phase shift
Yamamoto Masahiro 平成14年8月30日