next up previous
: Reflection and Transmission Coefficients : Refelction and Transmission : Condition III:

Condition IV: ${\bf t}\cdot [{\bf H}_1 - {\bf H}_2 ] = {\bf J}_s$


$\displaystyle H_x + H'_x$ $\textstyle =$ $\displaystyle H''_x + (J_s)_x$ (84)
$\displaystyle H_y + H'_y$ $\textstyle =$ $\displaystyle H''_y + (J_s)_y$ (85)
$\displaystyle B_x$ $\textstyle =$ $\displaystyle \mu\mu_0 H_x, ......$ (86)
$\displaystyle \left[ J_s ({\bf r}, t) \right] _x$ $\textstyle =$ $\displaystyle \int\int dk d\omega [J_s (k, \omega)]_x e^{i(kx - \omega t)}, ..$ (87)
$\displaystyle \left( -\frac{kE_s \cos\theta}{\mu_1 \mu_0 \omega} +
\frac{kR_s \cos\theta}{\mu_1 \mu_0 \omega}\right)
e^{i(k \sin\theta x - \omega t)}$ $\textstyle =$ $\displaystyle -\frac{k'' T_s \cos\theta'' }{\mu_2 \mu_0 \omega}e^{i(k'' \sin\theta'' - \omega t)}
+ [J_s ({\bf r}, t)]_x$  
$\displaystyle \frac{\tilde{n_1} \cos\theta}{ \mu_1 }
(E_s - R_s )$ $\textstyle =$ $\displaystyle \frac{\tilde{n_2} \cos\theta''}{ \mu_2 }
T_s + c \mu_0 [J_s (k\sin\theta, \omega)]_x$ (88)
$\displaystyle \left( \frac{kE_p}{\mu_1 \mu_0 \omega} + \frac{kR_p}{\mu_1 \mu_0 \omega}
\right) e^{i(k\sin\theta x -\omega t)}$ $\textstyle =$ $\displaystyle \frac{k'' T_p}{\mu_2 \mu_0 \omega}e^{i(k'' \sin\theta'' x -\omega t)}
+ [J_s ({\bf r}, t)]_y$ (89)
$\displaystyle \frac{\tilde{n_1} }{ \mu_1 }( E_p + R_p )$ $\textstyle =$ $\displaystyle \frac{\tilde{n_2}}{ \mu_2 }T_p + c \mu_0 [J_s (k\sin\theta, \omega)]_y$ (90)



Yamamoto Masahiro 平成14年8月30日