Electric field and charge at the corner or edge
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For simplicity Poisson equation is considered here, i.e. no charge except at the interface between the
electrode and the medium.
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In the present work we will consider the potential and charge distribution at an edge or corner of the

two conducting(metal) plate.
Electrodynamics, 3rd edition, Chap. 2, Section 11”.
plate is shown.

Figure 1:

We just follow the discussion done by J. D. Jackson’s book on ”Classical
In the Fig.1 the corner between the two conducting

It is convenient to use cylindrical coordinate r, 0, z. In the z direction the potential and charges are the
same, then we will consider the r, 8 problem.
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The radial direction e, and the angular directon e, as shown in Fig.1 is perpendicular, then the gradient
of the potential ¢ can be defined
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V(ﬁ = erg + eT’de;% (12)

If we can separate the solution in = and 6 variables,

¢(r,0) = R(r)O(0) (13)
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The general solutions for w # 0 are

R(r) = ar*+br % (16)
©(0) = ccos(wh) + dsin(wh) (17)
and for w =0
R(r) = a+flr (18)
O0) = v+ (19)

From the boundary conditions, i.e. ¢(r,0 =0) =V, ¢(r,0 = 0y) =V

¢ = 0, [sin0=0,sin(why) =0], 6§=0 (20)
r = 0 is included, then
b = 0, =0 (21)
and
sin(wy) = 0, w= %:, n=1,2.3,.. (22)
Then we have
o(r,0) = V4 i an ™™ % sin(nw6 /0p) (23)
n=1

Near r = 0 the n = 1 term is important, then we can write

o(r,0) ~ V4 ayr™/% sin(mw6/60y) (24)



The electric field near » = 0 is given by
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E = Vo= —er§ — erd@;% (25)
E, ~ —alelr“/eo_l sin(76/0y) (26)
0
E..o = —algr”/eo_l cos(m6/0y) (27)
0

From the Gauss theorem at the surface, we can write with the unit vector n form metal to vacuum
n- [Dvac - Dmotal] - 0metal|vaca Dmctal =0
The surface charge density at ¢ = 0 and ¢ = 6y are equal and can be approximated

Tee B
U(T) = Dvac = 660E7‘d9 = _QIWOTW/GO 1 (28)

When 6 is small, the power of r becomes large and no charge accumulation at the corner r = 0. For
flat surface 6y = 7, there is no dependence on r. When 6y > 7 the power 7/6y — 1 of r becomes negative,
and at the edge the surface charge density become singular.
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Figure 2: coner and edge with 6y = n/4,7/2,37/2,7n /4.

Table 1: r sigularity at the coner or edge
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