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1 Euler-Lagrange equtaion of motion with constraints
Now we can write the Lagrangian of the system

L:L(qlqua'"7qN7417227"'7QN) (27)

The action integral S is written by
t2 o 2 o
S = g dtL(QlaQQ?'"7q]V7q17227"'7qN) (28)
1

The Hamilton principle says that the motion of which the action integral has extremal value is the
actual motion. This pinciple gives us the Eular-Langrange equation.

d (OL oL .
(8%>_8%_07 Z_17277f (29)

Figure 1: Action integral

Now we consider the holonomic constaraint
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Using the Lagrnage undetermined multipliers method

t2 t2 X
5 | dt(L + Z/\kgk - /t dt [L({qi +6¢i}{di + 06:}) + > Mege({a + 5611‘})]
1 1 k
to K
—/t dt lL({qz‘}n {di}) + Z)\kgk({%’})] (31)
1 k
2 L lar oL S
= [ dtdY |0+ 200+ Y Ak 32
/t1 ; BT Z " 0qi q] )
2 I Tor d (OL
Igy,
== dt 7(5 T 6 [3 5 (3
A 20" " @ (o) 7 +ZM@Q q] o
I [oL d (0L d
9k
zi: t at 0q;  di (8(1') +zk:)\k 3%] o (34
Here we used b 9L ds 9 ¢ ¢ 9
2 L ddg; { L } 2 2 . d ( L)
dt== = 6| — | dt— 5q; 35
/t1 dq; dt 9¢; 1y, Ju o dt \0g @ ()
and dq(t1) = dq(t2) = 0. For arbitary dg; we have 6(L + > A\pgx) = 0 if
d (0L agk
~Z 2= 36
dt (aQZ> 8‘]2 k ( )



2 Constraint dynamics: SHAKE to RATTLE

To reduce the computaion, one sometimes want to handle the dynamics of a molecular system in which
certain arbitrarily selected degrees of freedom (such as bond lengths) are constrained, while others
remain free to evolve under the influence of intermolecular and intramolecular forces.

SHAKE is based on the Verlet algorithm. The Verlet algorithm has some drawbacks. The velocities
of the atoms are not among the variables used in integrating the equations of motion, and they can be
obtained only with extra effort or strorage. The velocity version of Verlet algorithm eliminates these
problems. The velocity version of SHAKE algorithm is called RATTLE, and it has two advantages
over SHAKE. It has higher precision and deals velocities directly. The latter advandatge is vely useful
to carry out constant temerature and pressure simulation and nonequilibrium sumulation.

The constraint conditions o;;({r}) may be given by *

oi({r}) = (x; —1;)* —dj; =0 (39)
The Lagrange equation of motion under these constraints becomes
d (0L oL , 0o;j
(2= 2= i 4
dt (81'2) (91‘1' ZJ: /\J(t) 8ri ( 0)

Here {)\;;} are the time-dependent Lagrange undetermined multipliers and the prime denotes a
summation over only those atoms j that are connected with atom ¢ by a constraint. Note that
Tij = Oji, Aij = Aji

0o;j

5o = 2ri (0~ (1) (41)

As the Lagrangean is given by

L= z Smar? — V({ri(0)), (42)

then the equation of motion becomes
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LQuestion: How about
g=2z—20=0 (37)
In this case the total momentum of the system is not conserved then new constraint

should be also considered. (ref: Okazaki MD book)



2.1 TIterative procedure for RATTLE calculations

Suppose that the positions, velocities, and intermolecular forces are known at time ¢, and we wish
to calculate the corresponding quantities for the time ¢ + §t. This can be done by a straightforward
modification of the iterative procedure of Ryckaert et al. [4] for SHAKE. Let us define

95 = (575)\5}2(75), (47)
kij = OtALY (t+0t), (48)
Eii = I‘l(t) + (6t/2m,)ﬁl(t) — (1/m,) Z/gijf“ij (t) (49)

Then the above Egs. can be expressed as

ri(t+0t) = 71;(t)+ otq;, (50)
Pi(t+0t) = d;+ (6t/2m;)Fi(t + ot)
—(1/mi) Z/kijfij (t + 5t> (51)

First we solve for the ¢; by interation. To start, we let
i = ti(t) + (6t/2my)Fi(t)  i=1,...N (52)
At this point the iterative loop begins. Pick a constraint. Suppose it involves atoms ¢ and j. Let
s =1;(t) + dtq,(t) —r;(t) — dtq;(t) (53)

Then s is the current approximation for the vector displacement of atoms i and j. If |s|? — dfj differs
from zero by an amount less than an acceptable tolerance, go to the beginning of the iterative loop and
pick a new constraint. If not, then we want to find corrections for q; and q; to make the constraint
be satisfied more closely. Let

v = ri(t) + t[a; — grij(t)/mi] (54)

and

v} =r;(t) + 6tla; + gri;(t)/m;] (55)

These are the new values for r;(t 4 6t) and r;(¢ + 0t), when the corrections proportional to g are made
to q; and q;. We want to choose g so that

vl =] P =d (56)

Solving for g we find
g = (s> = d3;)/{26t[s - vij](m; " +m; 1)} (57)

which we have neglected quantities of order g?. Then we replace q; by the old value of q; minus
gri;j(t)/m; and q; by the old value of q; plus gr;;(t)/m;, go to the beginning of the iterative loop, and
choose a new constraint. This iterative procedure is continued until all the constraints are satisfied to
within the acceptable tolerance.

The procedure converges to the correct result, At each stage of the iterative procedure, the q’s are
corrected by an amount of the proper form, and the procedure terminates when all the constraints on
the interatomic distances are satisfied to within the desired accuracy.

Now that q;. and r;(t + 6t) are known fof all 7, th forces at time ¢ + 6¢ can be calculated. Just
before doing this, the positions at time ¢+ dt should be placed in the memory locations that previously
held the positions at time ¢, and the q;,7 = 1,,..N, should be placed in the memory locations that
previously held the velocities at time ¢. This allows the algorithm to be implemented using just 3N
memory locations for N degrees of freedom.

Next we solve for the r;(t + dt) by iteration. To start, we let

i'z-(t—i-ét) ZQi—F(SFi(t—l-(St)/Qmi, 1=1,...,N. (58)

At this point the iterative loop begins. Pick a constraint. Suppose it involves atom ¢ and j.
Calculate the dot product of r;;(t+0t) and 1;;(t+6t). If it differs from zero by less than an acceptable



tolerance, then go to the beginning of the iterative loop and pick another constraint. If it differs from
zero by more than the acceptable tolerance, then we want to correct the two velocities, r; and r;. Let

P = 1 (t + 6t) — kry;(t + 6t) /m; (59)

and

B = £j(t+ 6t) + kryj(t + 8t) /my o

These are the new values of 1;(t + 0t) and 1;(¢ 4 §t) when corrections proportional to k are made. We
want to choose k so that ¥/ — I"jT is perpendicular to r;;(t + 6t). This leads to the following choice:

k=it + 6t) - [Bi(t+ 6t) — B (t + )] /{df;(m; " +m; 1)} (61)

Then we replace ©;(t + 6t) by #1, and (¢ + dt) by I"]T, go to the beginning of the iterative loop, and
pick another constraint.

This procedure converges to the correct result. At each stage of the iterative procedure, the
r;(t + ot) are corrected by an amount of the proper form. and the procedure terminates when all the
constraints on the velocities are satisrred to within the desired accuracy.

[REFERENCES:Hans C. Andersen, J. Comput. Phys. 52, 24-34 (1983)]



