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A. Origin of the attractive part of L-J potential

Now we condsider two hydrogen atoms. If the two atoms are located far away, the Hamiltonian H0 and the
wavefunction Ψ of the system is given by two independent H atoms,
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FIG. 1: van der Waals interaction between two hydrogen atom

V (perturbation) is given by
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If we assume r >> r1, r2, and vector r is in the z direction. r = (0, 0, z). If we consider the order up to r−1(x2
1/r

2)
because the (1/r)(z1/r) order terms are cancelled out. If we use (1 + x)−1/2 ' 1 − x/2 + 3x2/8...

|r − r1|−1 = [(x− x1)2 + (y − y1)2 + (z − z1)2]−1/2 = r−1

[
z2 − 2zz1 + x2

1 + y2
1 + z2

1

r2

]−1/2

= r−1

[
1 +

−2zz1 + x2
1 + y2

1 + z2
1

r2

]−1/2

' r−1(1 − −2zz1 + x2
1 + y2

1 + z2
1

2r2
+

3z2
1

2r2
)

|r + r2|−1 ' r−1(1 − 2zz2 + x2
2 + y2

2 + z2
2

2r2
+

3z2
2

2r2
)

|r − r1 + r2|−1 ' r−1[1 − −2zz1 + 2zz2 + x2
1 − 2x1x2 + x2

2 + y2
1 − 2y1y2 + y2

2 + z2
1 − 2z1z2 + z2

2

2r2
+

3
2

(z2 − z1)2

r2
]

V ' e2

4πε0r
(1 − 1 +

−2zz1 + x2
1 + y2

1 + z2
1

2r2
− 3z2

1

2
− 1 +

2zz2 + x2
2 + y2

2 + z2
2

2r2
− 3z2

2

2

+1 − −2zz1 + 2zz2 + x2
1 − 2x1x2 + x2

2 + y2
1 − 2y1y2 + y2

2 + z2
1 − 2z1z2 + z2

2

2r2
+

3
2
z2
1 + z2

2 − 2z1z2
r2

)

=
e2

4πε0r3
(x1x2 + y1y2 + z1z2 − 3z1z2) =

e2

4πε0r3
(x1x2 + y1y2 − 2z1z2) (4)

This is the instantaneous dipole-dipole interaction 1/(4πε0r3)[~µ1 ·~µ2−3(~µ1 · r̂)(~µ2 · r̂)]. Here ~µ1 = e(−r1), ~µ2 = e(−r2).
Using perturbation theory the energy change is given by
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For ground state n = 0, E(0)
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In the last equation the integral of the product of even, odd, even functions becomes zero. and the second order
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In the same perturbation theory the atomic polarizability is given by
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Here the electric field is in z-direction. Then we can get 〈0|z2|0〉 = 〈0|x2|0〉 = 〈0|y2|0〉 = −(αI)/(2e2) With this
relation
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This equation was derived by F. London (Z. Phys. 63, 245-279 ,1930). Since the vdW interaction can not be estimated
from usual density functional theory( because we should consider excitation and dynamical dipole-dipole interaction),
some semiempirical correction based on Eq.(11) is reported. (e.g. F. Ortmann et al. PRB, 73, 205101, 2006)

B. LJ potential

The final result give the attractive part of the Lennard-Jones potential, φ(r) = 4ε[(σ/r)12 − (σ/r)6]. In the mixed
system one can use the following convention(Lorentz-Berthelot mixing rule)
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In the case of σij we can understand the rule from the view point of hard-sphere. In the case of εij we should consider
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From the final equation the approximation of Eq.(13) may be not bad. If one consider the deviation form the standard
mixing rule, the modified Lorentz-Berthelot mixing rule can be used. ξ is the deviation parameter.
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FIG. 2: from http://socrates.berkeley.edu/ peattiea/research main.html

The Gecko (¬?√¢¬?√†¬?√?¬Å jcan stick to the wall. (both on the hydrophilic and hydrophobic surace and
even dead gacko can stick!!) They have 1 billion contacting point per foot and interact via van der Waals force!!.
The total adhesive stress from Autumn’s force measurements is 576 kPa (5.68 atm).

[ Kellar Autumn, Yiching A. Liang, S. Tonia Hsieh, Wolfgang Zesch, Wai Pang Chan, Thomas W. Lenny, Ronald
Fearing and Robert J. Full (2000) ”Adhesive force of a single gecko foot-hair”, Nature, 405(6787). 681-685, and Proc
Natl Acad Sci U S A. 2002 99, 12252-6. ”Evidence for van der Waals adhesion in gecko setae.” Autumn K, Sitti M,
Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ.]

Recently Huber et al. showed that the evidence for capillary force contribution to gecko adhesion from single
spatula AFM force measurment. (PNAS, 102, 16293-16296, 2005) The pull-off force is increased lineary (from 7 nN
to 12 nN) with the humidity for hydrophilic flat surface and the the increase is not so much (from 6 nN to 9 nN) for
hydrophobic surface. At the humidity around 90 % the monolayer of water is adsorbed on the hydrophilic surface.

C. Kittel’s derivation of the attractive part of LJ potential: dynamical effect

Now we consider the two neutral atom is separated by R. At a certain moment the atoms induce dipole moment
in each other and the induced dipole moments cause an attractive interaction between the atoms.

We assume the two atoms are identical linear harmonic oscillators and only electrons move in the x-direction. When
the displacement of electrons are x1 and x2, the force constants are K, and the momenta of the oscillators are p1 and
p2 The hamiltonian of the system without the interaction between the induced dipole moments is
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FIG. 3: capillary force
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FIG. 4: Kittel’s explanation on the vdW attractive potential (ISSP book)

Here m is the mass of electron and K = mω2
0 . The energy of the ground state is the double of the zero point energ
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The interaction H1 between the dipoles becomes
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Here e is the elementary charge and ε0 is the permittivity of free space. If we assume that R� |x1|, |x2|.
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Here we used the approximation 1/(1 ± x) ' 1 ∓ x+ (1/2)x2 + .... The total hamiltonian becomes
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If we use the symmetric and anti-symmetric coordinate
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The two vibrational frequencies are found for this interacting system
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The zero point energy change is
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The attractive interaction is proportional to R−6 and A include the dynamics of the oscillator through ω0


