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A new approach to the construction of first-principles pseudopotentials is described. The method allows
transferability to be improved systematically while holding the cutoff radius fixed, even for large cutoff
radii. Novel features are that the pseudopotential itself becomes charge-state dependent, the usual norm-
conservation constraint does not apply, and a generalized eigenproblem is introduced. The potentials have
a separable form well suited for plane-wave solid-state calculations, and show promise for application to
first-row and transition-metal systems.

The development of first-principles norm-
conserving pseudopotentials (PP) by Hamann,
Schlüter, and Chiang[1] (HSC) and others[2,3]
has paved the way to accurate calculations of
solid-state properties within the local-density ap-
proximation using plane-wave basis functions.[4]
However, the utility of this approach to systems
containing highly localized valence orbitals (e.g.,
for first-row and transition-metal atoms) has been
limited, because of the difficulty of representing the
pseudo-wave-functions in a plane-wave basis. ...

Here, a new approach to the construction of first-
principles PP is described, in which a fully nonlo-
cal PP is generated directly. It has the fol-
lowing desirable properties: (i) It takes the
form of a sum of a few separable terms. (ii) It
becomes local and vanishes outside the core.
(iii) The scattering properties and their en-
ergy derivatives are, by construction, correct
at several energies spanning the range of occu-
pied states, and the transferability can be sys-
tematically improved by increasing the num-
ber of such energies. (iv) The normconserv-
ing constraint is removed so that the pseudo-
wave-function can be constructed in such a
way as to optimize smoothness. (v) The PP
itself becomes involved in the self-consistent
screening process, thereby improving transfer-
ability with respect to changes in charge con-
figuration. Together, these features allow the
cutoff radius to be increased without sacrific-
ing transferability, even for ”problem” cases
such as 2p and d orbitals.

The construction of the new PPs will be described
in three stages. In the first stage, I show that
it is possible to arrive at a fully nonlocal
KB-type PP by working with the wave func-

tion directly, bypassing the construction of a
semilocal potential entirely. Moreover, this can
be done at an arbitrary energy ϵi, as suggested by
Hamann.[12]1

As usual, an AE calculation is carried out on a free
atom in some reference configuration, Ieading to a
screened potential VAE(r). Cutoff radii rcl and rloc

c

are chosen for the wave functions and local PP, re-
spectively, and a diagnostic radius R is chosen large
enough that all pseudo- and AE quantities agree at
and beyond R. Some algorithm is used to gener-
ate a smooth local potential Vloc(r) which approaches
VAE(r) beyond rloc

c . Now consider an AE wave func-
tion ψi(r) of definite angular momentum Im, which
is a solution of the Schrödinger equation, regular at
t he origin, at an arbitrary energy ϵi:

[T + VAE(r)]ψi(r) = ϵiψi(r) (1)

Here i is a composite index, i = {ϵilm}, T is the
kinetic energy operator − 1

2∇
2 and VAE is the origi-

nal reference screened potential, i .e., ψi is not de-
termined self-consistently. (Atomic units are used
throughout.) Despite the fact that ψi is, in general,
non-normalizable. I adopt a bracket notation

(T + VAE − ϵi)|ψi〉 = 0 (2)

as a stand-in for the previous equation. Quantities
such as 〈ψi|ψi〉 are ill-defined, but I shall make use of
the special notation 〈ψi|ψi〉R to denote the integral
of ψ∗

i (r)ψi(r) inside the sphere of radius R.
1Usually the radial schrödinger equation is solved using

Adams-Moulton method from the origin r = 0 and from
ψ = 0, r = ∞, and match them at the classical turning point.
In the Hamann’s paper ϵi is arbitrary chosen and using the
outward Adams-Moulton method the radial wavefunction is
solved. Thereby sometimes the wavefunction is divergent at
r → ∞.
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Now a pseudo-wave-function φi is constructed, sub-
ject to the constraints that it join smoothly to ψi at
rcl and that it satisfy the norm-conserving property
〈φi|φi〉R = 〈ψi|ψi〉R. Since the wave function

|χi〉 = (ϵi − T − Vloc)|φi〉 (3)

is local (it vanishes at and beyond R where VAE =
Vloc and φi = ψi), the nonlocal PP operator

VNL =
|χi〉〈χi|
〈χi|φi〉

(4)

is well defined. It is straightforward to verify that φi

is an eigenvector of T + Vloc + VNL, 2 and that the
scattering properties and their energy derivatives are
correct at ϵi in the usual way (see below).

The second stage of the new PP scheme is arrived
at by generalizing the previous construction to the
case of two or more energies ϵi at which the scat-
tering properties will be correct, as follows. For a
given angular momentum l, some number (usually
between one and three) of energies which span the en-
ergy of occupied states of a target (e.g., bulk crystal)
calculation are chosen. Now the set of pseudo-wave-
functions |φi〉 are constructed from the AE wave func-
tions |ψi〉 as before, except that they should satisfy
the generalized norm-conserving condition Qij = 0,
where

Qij = 〈ψi|ψj〉R − 〈φi|φj〉R (5)

Forming the matrix Bij = 〈φi|χj〉 and defining a set
of local wave functions

|βi〉 =
∑

j

(
B−1

)
ji
|χj〉 (6)

which are dual to the |φi〉, the nonlocal PP operator
can be chosen as

VNL =
∑

i,j

Bij |βi〉〈βj | (7)

Then it can easily be shown that |φi〉 satisfies the
secular equation (H − ϵi)|φi〉 = 0, where H = T +
Vloc + VNL. 3

I now show that the matrix Bij , and therefore the
operator VNL, are Hermitian when Qij = 0. Taking

2

VNL|φi〉 = |χi〉 = (ϵi − T − Vloc)|φi〉

then φi is an eigenvector of T + Vloc + VNL. Then it is shown
that the fully nonlocal KB-type PP can be obtained directly
from VNL = |χi〉〈χi|/〈χi|φi〉.

3From the definition of |βi〉
∑

i

Bik|βi〉 =
∑

i,j

(
B−1

)
ji

Bik|χj〉

=
∑

j

δjk|χj〉 = |χk〉

|χj〉 =
∑

i

〈φi|χj〉︸ ︷︷ ︸
Bij

|βi〉

ui(r)/r to be the radial wave function associated with
φi(r),

Bij =
∫ R

0

dru∗
i (r)

[
ϵj +

1
2

d2

dr2
− l(l + 1)

2r2
− Vloc(r)

]
uj(r) (8)

4

The expression for B∗
ji is identical except that ϵj

is replaced by ϵi, and the derivative d2/dr2 acts to
the left. 5 After one integration by parts on each
expression,

Bij − B∗
ji = (ϵj − ϵi)〈φi|φj〉R

+
1
2
[u∗

i (R)u′
j(R) − u∗′

i (R)uj(R)] (9)

6 A similar expression can be derived for the AE wave
functions; subtracting this from the above equation,
and noting that the pseudo- and AE wave functions
and their derivatives match at R, one obtains

Bij − B∗
ji = (ϵi − ϵj)Qij (10)

which vanishes (i.e, Hermitian) when Qij = 0.
Again one may verify that (d lnu/dr)R and its en-

ergy derivative match the corresponding AE quan-
tities at each ϵi. Thus, by increasing the number of

〈φk|χj〉 =
∑

i

〈φi|χj〉〈φk|βi〉

then 〈φk|βi〉 = δki

VNL|φk〉 =
∑

i,j

〈φi|χj〉|βi〉〈βj |φk〉 =
∑

i

〈φi|χk〉|βi〉

=
∑

i

〈φi|χk〉
∑

j

(
B−1

)
ji
|χj〉

=
∑

i,j

Bik

(
B−1

)
ji

|χj〉

=
∑

j

δjk|χj〉 = |χk〉

= (ϵk − T − Vloc)|φk〉

4In the central force field radial part of Schrödinger equation
becomes

−
h̄2

2m

(
d2u

dr2
−

l(l + 1)

r2
u

)
+ V u = ϵu

5

B∗
ji = 〈φj |χi〉∗ = 〈χi|φj〉

6

Bij =

∫ R

0

drϵju∗
i (r)uj(r) +

1

2

∫ R

0

dru∗
i (r)u′′

j (r)

+

∫ R

0

dru∗
i (r)

[
−

l(l + 1)

2r2
− Vloc(r)

]
uj(r)

∫
fg′ = fg −

∫
f ′g

Bij = ϵj〈φi|φj〉R +
1

2
u∗

i (r)u′
j(R)
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energies ϵi at which the construction is done, the scat-
tering properties of the PP can be made to reproduce
those of the AE potential with arbitrary accuracy
over the energy range of interest. [13]

One could stop here, and still have a useful scheme.
However, I now show that the constraint Qij =
0 is unnecessary, if one is willing to adopt a
generalized eigenvalue formalism in which an
overlap operator appears. In this third stage, I
define a nonlocal overlap operator

S = 1 +
∑

i,j

Qij |βi〉〈βj | (11)

and redefine the nonlocal potential operator to be

VNL =
∑

i,j

Dij |βi〉〈βj | (12)

where
Dij = Bij + ϵjQij (13)

and Qij defined as before. Note that with these def-
initions,

〈φi|S|φj〉R = 〈ψi|ψj〉R (14)
7 Then |ψi〉 is easily shown to be a solution of the
generalized eigenvalue problem (H − ϵiS)|φi〉 = 0. 8

Now it follows from Eqs. (5), (10), and (13) that Q
and D are Hermitian matrices, even though B is not.
Thus H and S are Hermitian operators. 9

7

〈φi|S|φj〉R = 〈φi|φj〉R +
∑

kl

Qkl 〈φi|βk〉R︸ ︷︷ ︸
δik

〈βl|φj〉R︸ ︷︷ ︸
δlj

= 〈φi|φj〉R + Qij = 〈ψi|ψj〉R

8

VNL|φi〉 =
∑

kl

(Bkl + ϵlQkl)|βk〉 〈βl|φi〉︸ ︷︷ ︸
δli

=
∑

k

Bki|βk〉

︸ ︷︷ ︸∑
kn

BkiB−1
kn

|χn〉=|χi〉

+
∑

kl

ϵlQkl|βk〉〈βl|φi〉

= |χi〉 + ϵi︸︷︷︸
δli

∑

kl

Qkl|βk〉〈βl|φi〉

= (ϵi − T − Vloc)|φi〉 + ϵi

∑

kl

Qkl|βk〉〈βl|φi〉

=

[
ϵi(1 +

∑

kl

Qkl|βk〉〈βl|) − T − Vloc

]
|φi〉

= (ϵiS − T − Vloc)|φi〉

9

D∗
ji = B∗

ji + ϵiQ
∗
ji = Bij − (ϵi − ϵj)Qij + ϵiQij = Dij

Moreover, it follows from the identity that (from
variational principle)

0 =
[

d

dϵ
〈φϵ|T + Vloc + VNL − ϵS|φϵ〉R

]

ϵ=ϵi

(15)

that

−1
2
u2

i

d

dϵ

d

dr
lnuϵ(r)

∣∣∣∣
R

= 〈φi|φi〉R + Qii = 〈ψi|ψi〉R (16)

(See Appendix) so that the matching of the AE and
pseudologarithmic derivatives follows in the usual
way.

The relaxation of the constraint Qij = 0 means
that each ψi can be made into a pseudo-wave-function
φi independently, with the only constraint being the
matching of φ(r) to ψ(r) at the cutoff radius. Thus
it becomes possible to choose the cutoff radius to be
well beyond the radial wave-function maximum, as il-
lustrated in Fig. l. A consequence of this freedom
is that a generalized eigenvalue problem has to be
solved in the target solid-state calculation. However,
within iterative approaches to the eigenvector prob-
lem, the time-dominant step is the multiplication of
H − ϵS by a trial vector φnk. In this case the oper-
ation count need hardly increase at all, because the
identical form of the nonlocal parts of S and H allows
them to be consolidated into a single operator. Inci-
dentally, the current PP bears a formal resemblance
to the original Phillips-Kleinman PP.[14] The latter
can be cast in the form of Eqs. (11) and (12) (with
the |βi〉 being just the core orbitals), but does not
have an adjustable cutoff radius.

In a self-consistent calculation, the ”deficit” of va-
lence charge in the core region associated with a
pseudo-wave-function such as that of Fig.1 will have
to be restored. The solutions of the generalized eigen-
value problem should be normalized according to

〈φnk|S|φn′k〉 = δnn′ , (17)

which is automatic in the usual methods of solution.
Taken together with Eq. (14). Eq. (17) ensures that
the pseudosolution has the same amplitude as the AE
one at and beyond R. To make up the charge deficit,
the valence charge density is defined to be

nv(r) =
∑

nk

φ∗
nk(r)φnk(r) +

∑

ij

ρijQij(r) (18)

where

ρij =
∑

nk

〈βi|φnk(r)〉〈φnk(r)|βj〉, (19)

Qij(r) = ψ∗
i (r)ψj(r) − φ∗

i (r)φj(r) (20)

It follows from Eqs. (11) and (17) that
∫

d3rnv(r) =
Nv, exactly, where Nv, is the number of valence elec-
trons in the unit cell.

***** The treatment of D in the following chapter
was corrected in their 1993 paper. K. Laasonen et al.
PRB, 47, 10142, 1993. *****
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In order to make a variational theory, the total
energy

Etot = 〈φnk|


T + V ion

loc +
∑

ij

Dion
ij |βi〉〈βj |


 |φnk〉

+ EH[nv] + Exc[nc + nv] (21)

is to be minimized subject to the constraint (17).
Here nc is a frozen-core density included to improve
transferability.[15]

Defining

VHxc(r) = V
[nv ]
H (r) + V [nv ]+[nc]

xc (r) (22)

DHxc
ij =

∫
drVHxc(r)Qij(r) (23)

the secular equation becomes

(T + Vloc + VNL − ϵnkS)|φnk〉 = 0 (24)

with VNL and S given by Eqs. (11)-(13), Vloc =
V ion

loc + VHxc, and Dij = Dion
ij + DHxc

ij . The V ion
loc

and Dion
ij must be obtained by unscreening the Vloc

and Dij of the generating atomic configuration in the
usual way. .. The dependence of Dij upon nv through
VHxc implies that the PP itself must be updated as
part of the self-consistent screening process.

....
In conclusion, it is hoped that the present method

will allow PPs to be applied to first-row atom and
transition-metal systems using modest plane-wave
cutoffs for the first time.

1 Appendix

Derivation of logarithmic derivative(Harrison, Solid
State Theory)

1.1 Norm-concerving pseudopotential
case

ϵRl = −
h̄2

2m

1

r2

∂

∂r
r
2 ∂

∂r
Rl + V (r)Rl +

h̄2

2m

l(l + 1)

r2
Rl

(ϵ + δϵ)R
′
l = −

h̄2

2m

1

r2

∂

∂r
r
2 ∂

∂r
R

′
l + V (r)R

′
l +

h̄2

2m

l(l + 1)

r2
R

′
l

If we apply R′
l to lhs of the first equation and Rl to lhs of the

second equation and integral from 0 to R

−δϵ

∫ R

0

dr4πr
2
R

′
lRl = −

4πh̄2

2m

(∫ R

0

R
′
l

∂

∂r
r
2 ∂

∂r
Rl

−

∫ R

0

Rl
∂

∂r
r
2 ∂

∂r
R

′
l

)

Here we assume V (r) had no ϵ dependence. Using partial integral

−δϵ

∫ R

0

dr4πr
2
R

′
lRl = −

4πh̄2

2m

([
R

′
lr

2 ∂Rl

∂r

]R

0

−

∫ R

0

dr
∂R′

l

∂r
r
2 ∂Rl

∂r

−
[

Rlr
2 ∂R′

l

∂r

]R

0

−

∫ R

0

dr
∂Rl

∂r
r
2 ∂R′

l

∂r

)

= −
4πh̄2

2m

(
R

′
lr

2 ∂Rl

∂r
− Rlr

2 ∂R′
l

∂r

)
R

R
′
l = Rl +

∂Rl

∂ϵ
δϵ

−δϵ

∫ R

0

dr4πr
2
(Rl +

∂Rl

∂ϵ
δϵ)Rl = −

4πh̄2

2m

(
(Rl +

∂Rl

∂ϵ
δϵ)r

2 ∂Rl

∂r

−Rlr
2 ∂(Rl +

∂Rl
∂ϵ δϵ)

∂r

)

R

−δϵ

∫ R

0

dr4πr
2
(R

2
l + Rl

∂Rl

∂ϵ
δϵ) = −

4πh̄2

2m
δϵ

(
r
2 ∂Rl

∂ϵ

∂Rl

∂r
− r

2
Rl

∂2Rl

∂ϵ∂r

)
R

If we pick up the first-order of δϵ

∫ R

0

drr
2
R

2
l =

h̄2

2m
R

2
(

∂Rl

∂ϵ

∂Rl

∂r
− Rl

∂2Rl

∂ϵ∂r

)

=
h̄2

2m
R

2
R

2
l

(
R

−2
l

∂Rl

∂ϵ

∂Rl

∂r
− R

−1
l

∂2Rl

∂ϵ∂r

)

= −
h̄2

2m
R

2
R

2
l

∂

∂ϵ

(
R

−1
l

∂Rl

∂r

)

= −
h̄2

2m
R

2
R

2
l

∂

∂ϵ

∂

∂r
ln Rl

1.2 In the case of ultra-soft PP

φl = RlYlm, Rl =
ul

r

(H − ϵlS)|φl〉 = 0

〈φ′
l|ϵS|φl〉R = 〈φ′

l|T + Vloc + VNL|φl〉R

〈φl|(ϵ + δϵ)S|φ′
l〉R = 〈φl|T + Vloc + VNL|φ′

l〉R

〈φ′
l|S|φl〉R = 〈φl|S|φ′

l〉R

S = 1 +

∑

i,j

Qij |βi〉〈βj |

〈φ′
l|VNL|φl〉R = 〈φl|VNL|φ′

l〉R∑

ij

Dij〈φ′
l|βi〉〈βj |φl〉|R =

∑

ij

Dij〈φl|βi〉〈βj |φ′
l〉|R

−δϵ〈φl|S|φ′
l〉R = 〈φ′

l|T |φl〉R − 〈φl|T |φ′
l〉R

ϵlSRlYlm = −
h̄2

2m

1

r2

∂

∂r
r
2 ∂

∂r
RlYlm + V φl −

h̄2

2m

Λ

r2
YlmRl

ϵSRlYlm = −
h̄2

2m

1

r2

∂

∂r
r
2 ∂

∂r
RlYlm + Vloc(r)RlYlm

+
h̄2l(l + 1)

2mr2
YlmRl + VNLRlYlm

〈φl|S|φ′
l〉R = 〈φl|(1 +

∑

i,j

Qij |βi〉〈βj |)|φ′
l〉R

= 〈φl|φ′
l〉R +

∑

i,j

Qij〈φl|βi〉〈βj |φ′
l〉R

−δϵ〈φl|S|φ′
l〉R = −

2πh̄2

m

(∫ R

0

R
′
l

∂

∂r
r
2 ∂

∂r
Rl

−

∫ R

0

Rl
∂

∂r
r
2 ∂

∂r
R

′
l

)

Here we assume V (r) had no ϵ dependence. Using partial integral

−
δϵm

2πh̄2 〈φl|S|φ′
l〉R = −

[
R

′
lr

2 ∂Rl

∂r

]R

0

+

∫ R

0

dr
∂R′

l

∂r
r
2 ∂Rl

∂r
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+

[
Rlr

2 ∂R′
l

∂r

]R

0

−

∫ R

0

dr
∂Rl

∂r
r
2 ∂R′

l

∂r

= −
(

R
′
lr

2 ∂Rl

∂r
− Rlr

2 ∂R′
l

∂r

)
R

R
′
l = Rl +

∂Rl

∂ϵ
δϵ

lhs = −δϵ

∫ R

0

dr4πr
2
Rl(Rl +

∂Rl

∂ϵ
δϵ)

−δϵ

∑

i,j

Qij〈φl|βi〉〈βj |φl + (∂φl/∂ϵ)δϵ〉R

rhs = −
2πh̄2

m

(
(Rl +

∂Rl

∂ϵ
δϵ)r

2 ∂Rl

∂r
− Rlr

2 ∂(Rl +
∂Rl
∂ϵ δϵ)

∂r

)

R

= −
2πh̄2

m
δϵ

(
r
2 ∂Rl

∂ϵ

∂Rl

∂r
− r

2
Rl

∂2Rl

∂ϵ∂r

)
R

If we pick up the first-order of δϵ

lhs =

∫ R

0

dr4πr
2
R

2
l +

∑

ij

Qijδliδlj =

∫ R

0

dr4πr
2
R

2
l + Qll

= 〈φl|φl〉R + Qll = 〈ψl|ψl〉R

rhs =
2πh̄2

m
R

2
(

∂Rl

∂ϵ

∂Rl

∂r
− Rl

∂2Rl

∂ϵ∂r

)

=
2πh̄2

m
R

2
R

2
l

(
R

−2
l

∂Rl

∂ϵ

∂Rl

∂r
− R

−1
l

∂2Rl

∂ϵ∂r

)

= −
2πh̄2

m
R

2
R

2
l

∂

∂ϵ

(
R

−1
l

∂Rl

∂r

)

= −
2πh̄2

m
R

2
R

2
l

∂

∂ϵ

∂

∂r
ln Rl
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