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Fig. 14. A one-dimensional metal-vacuum-metal tunneling junction. The sample,
left, and the tip, right, are modeled as semi-infinite pieces of free-electron metal.

XPS data from MESA (Hobara 2000 6/30)
The binding energies of photoelectron from

the S atom in the S-Au bonds are ca.162 eV,
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(C. J. Chen, Introduction to STM, Oxford 1993)
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Fig. 1.6. Tunneling through a controllable vacuum gap. The exponential depend-
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(Reproduced from

This results in a highly corrugated tunncling current distribution.
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Missing carbon atoms of Graphite in STM

Experimental and simulated STM and AFM images of graphite. One hexagonal surface unit cell
with the two basis atoms (white) and (red) is superimposed for clarity. (A) Experimental image
of graphite in constant-height dynamic STM mode (bias voltage +100 mV, amplitude 300 pm,
scanning speed 0.2 nm/s). The tunneling current ranges from 0.9 to 1.4 nA. Only the atoms
appear in the image. The green arrow indicates a shift of the experimental STM image with
respect to the AFM image by 68 pm (see text). (B) Experimental image of graphite in constant-
height dynamic AFM mode showing both and atoms. The frequency shift data have been
recorded simultaneously with the tunneling data shown in A, ranging from +5.4 to +5.9 Hz. (C)
The calculated charge density of graphite at the Fermi level Fermi (after refs. 11 and 12) at a
height of 200 pm over the surface plane, ranging from 0.3 to 1.6 electrons per nm3. The maxima
of Fermi are at the atom positions. The STM image reflects the charge density at the Fermi
level. (D) Calculated total charge density, also at a height of 200 pm over the surface plane,
ranging from 2.0 to 4.1 electrons per nm3. The repulsive forces that are imaged in the
experimental AFM image (B) are increasing with the charge density; thus, a charge density plot
is a good approximation for a repulsive AFM image. The experimental image in B and the
calculated charge density shown in D have local maxima over and sites.
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B#E LEED Low Energy Electron Diffraction
RHEED Reflection High Energy Electron Diffraction

TED Transmission Electron Diffraction
R FHH

SEM Scanning Electron Microscope

STM Scanning Tunneling Microscope

AFM Atomic Force Microscope

JEBI
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Window

Vacuum wall
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Some typical LEED patterns. (a) The clean Cu(100) surface. Only spots
“from the bulk exposed plane are present. Primary energy 150 eV. (By courtesy of
Dr R. J. Reid, New University of Ulster.) (b) The clean Si(111) surface. Extra
spots are present between the six (10) features (bright spots) from the bulk exposed
plane. These extra features correspond to a surface mesh parallel to the substrate
mesh but with 7 times the length of its sides. Because of these 4 th order spots this
pattern is called Si(111)(7 x 7) or Si(111)7. Primary energy 42 eV. (c) The W(110)-
(2 x 1)-O LEED pattern due to oxygen adsorbed on W(110). Primary energy
53 eV. (By courtesy Dr J. W. May. Eastman—-Kodak Laboratories, New York.)

N
Smaller incident angle «
for primary beam -

®)

/

/7 Near? flat
Ewald sphere

X . jl'l!e BHEED method. (a) Experimental goemetry. A fine parallel beam of
electrons is incident near ¢ = 90° upon a flat single-crystal surface. (b) Ewald
sphere construction for RHEED.

(b)

B RHEED patterns obtained at 100 keV from the (111) surface of silicon
(a) [211] azimuth; (b) {101] azimuth. The streaking indicates that the surface
is flat.
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Transmission electron diffraction pattern for Si(111) 7 x 7
(Takayanagi et al.,, 1985).

Scanning tunnelling microscopic images of the topogra
(top panel) and three electronic surface states of a Si(111) 7 x 7
surface. See text for discussion (Hamers, Tromp & Demuth, 1986
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For rutile TiO,(110) surface, atomic-resolution
STM is only successful when imaging unoccupied
state(positive bias) on slightly reduced({n-type)
samples.

.

TRL M 1322 145

FIG. 1. STM image of a stoichiometric 1 X 1 TiO4(110)
surface, 140 X 140 A2, Sample bias +1.6 V, tunneling cur-
rent 0.38 nA. The inset shows a ball-and-stick model of
the unrelaxed 1 > 1 TiOy(110) surface. Rows of bridging
oxygen atoms are labeled “A,” rows of fivefold coordinated

titaniums “8."
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Figure 21-5 Carbon 1s X-ray photoelectron spectrum for
ethyl trifluorcacetate.  (From K. Sieghahn et al., ESCA: Atomic,
Molecular, and Solid-5tate Studies by Means of Electron Spec-
troscopy, p. 21. Upsala: Almguist and Wiksells, 1967, With permis-
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FIG. 2. (a) Contour plots of [001]-averaged charge densities for
the relaxed stoichiometric 11 surface. (a) Near-VBM charge den-
sities obtained by integrating the LDOS over a 1-eV energy window
near the valence band maximum. (b) Near-CBM charge densities
obtained by integrating over a 2-eV energy window near the con-
duction band minimum. Contour levels comrespond to a geometric

progression of charge density, with a factor of 0.56 separating
neighboring contours.,
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Figure 21-7 Schematic representation of the source of
(a) Auger electron emission and (b) X-ray fluorescence that
competes with Auger emission.



1.2 Tunneling: an elementary model

In this section, we discuss the concept of tunneling through an elementary
one-dimensional model. In classical mechanics, an electron with energy E
moving in a potential U(z) is described by

2
Pz -
m +U(z) = E, (1.1)

where m is the electron mass, 9.1 X 10-2 g. In regions where E > U(2), the
electron has a nonzero momentum p.. On the other hand, the electron cannot
penetrate into any region with E < U(z), or a potential barrier. In quantum
mechanics, the state of the same electron is described by a wavefunction {(z),
which satisfies Schrodinger's equation,

ﬁz d2
- —— = U(2) + U(2) = EY(2). (1.2)
2m 4,2
Consider the case of a piecewise-constant potential, as shown in Fig. 1.3. In
the classically allowed region, E > U, Eq. (1.2) has solutions

-
W) = Y0)e™ ™, (1.3)
Classical Impene- /U
mechanics trable
barrier
Quantum Tunneling /U
mechanics effect
E
’ . A,
N =
Lo — ~7

Fig. 1.3. The difference between classical theory and quantum theory. In quantum
mechanics, an electron has a nonzero probability of tunneling through a potential
barrier. (After Van Vleck; see Walmsley, 1987.)



where

A/ 2m(E - U)

k = - (1.4)

is the wave vector. The electron is moving (in either a positive or negative
direction) with a constant momentum p, = fik = [2m(E - U)]'?, or a constant
velocity v, = p./m, the same as the classical case. In the classically forbidden
region, Eq. (1.2) has a solution

P(z) = P(0)e ", (1.5)

where

A/ 2m(U —E)

K= P (1.6)

is the decay constant. It describes a state of the electron decaying in the +z
direction. The probablllty density of observing an electron near a point z is
proportional to |(0)|’e-2<, which has a nonzero value in the barrier region,
thus a nonzero probablhty to penetrate a barrier.  Another solution,
Y(z) = YP(0)e*, describes an electron state decaying in the -z direction.

Starting from this elementary model, with a little more effort, we can
explain some basic features of metal-vacuum—metal tunneling, as shown in
Fig. 1.4. The work function ¢ of a metal surface is defined as the minimum
energy required to remove an electron from the bulk to the vacuum level. In
general, the work function depends not only on the material, but also on the
crystallographic orientation of the surface (see Section 4.2). For materials
commonly used in STM experiments, the typical values of ¢ are listed in
Table 1.1. (The work functions for alkali metals are substantially lower, typi-
cally 2-3 eV.) Neglecting the thermal excitation, the Fermi level is the upper
limit of the occupied states in a metal. Taking the vacuum level as the refer-
ence point of energy, Er = — ¢. To simplify discussion, we assume that the
work functions of the tip and the sample are equal. The electron in the sample
can tunnel into the tip and vice visa. However, without a bias voltage, there is
no net tunneling current.

Table 1.1. Typical values of work functions. After Handbook of
Chemistry and Physics, 69th edition, CRC Press (1988).

Element Al Au Cu Ir Ni Pt Si W
d (eV) 41 54 46 56 52 57 48 438




Vacuum level

z=0 Z=5

Fig. 1.4. A one-dimensional metal-vacuum-metal tunneling junction. The sample,
left, and the tip, right, are modeled as semi-infinite pieces of free-electron metal.

By applying a bias voltage V, a net tunneling current occurs. A sample
state s, with energy level E, lying between Er— eV and Er has a chance to
tunnel into the tip. We assume that the bias is much smaller than the value of
the work function, that is, eV<<¢. Then the energy levels of all the sample
states of interest are very close to the Fermi level, that is, E, ~ — ¢. The prob-
ability w for an electron in the nth sample state to present at the tip surface,
z= W, is

2 — LK
woc [,(0)] e W, (1.7)

where ,(0) is the value of the nth sample state at the sample surface, and
K= ———— (1.8)

is the decay constant of a sample state near the Fermi level in the barrier
region. Using eV as the unit of the work function, and A~! as the unit of the
decay constant, the numerical value of Eq. (1.8) is

k = 0.51 \/beV) A~ (1.9)

In an STM experiment, the tip scans over the sample surface. During a scan,
the condition of the tip usually does not vary. The electrons coming to the tip
surface, z = W, have a constant velocity to flow into the tip. The tunneling



current is directly proportional to the number of states on the sample surface
within the energy interval eV, which are responsible for the tunneling current.
This number depends on the local nature of the sample surface. For metals, it
is finite. For semiconductors and insulators, the number is very small or zero.
For semimetals, it is in between. By including all the sample states in the
energy interval eV, the tunneling current is

Ep

2 _ ®
ESIE S O ()] I (1.10)
E,=Eg—¢eV

If Vis small cnnugh"that the density of electronic states does not vary signif-
icantly within it, the sum in Eq. (1.10) can be conveniently written in terms of
the local density of states (LDOS) at the Fermi level. At a location z and
energy E, the LDOS pg(z, E) of the sample is defined as

E 2
B =+ > lb@l, (1.11)
E,=E-«

for a sufficiently small e. The LDOS is the number of electrons per unit
volume per unit energy, at a given point in space and at a given energy. It
has a nice feature as follows. The probability density for a specific state,
! ilf.lz. depends on the normalization condition: its integral over the entire
space should be 1. As the volume increases, the probability density |, ]’ of a
single state decreases; but the number of states per unit energy increases. The
LDOS remains a constant. The value of the surface LDOS near the Fermi
level is an indicator of whether the surface is metallic or insulating.

The tunneling current can be conveniently written in terms of the LDOS
of the sample:

-2k W
lIoc Vpd0, Epe
sl F (1.12)

~ Vg0, Eg) ¢~ 1035V W

The typical value of work function is ¢=4 eV, which gives a typical value of
the decay constant k=1 A-'. According to Eq. (1.12), the current decays about
e’~7.4 times per A.

The dependence of the logarithm of the tunneling current with respect to
distance is a measure of the work function, or the tunneling barrier height
(Garcia, 1986; Coombs and Pethica, 1986). In fact, from Eq. (1.12),




SEM (Scanning Electron Microscope)

TEM (Transmission Electron Microscope)
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Binary SAM on Au:
Surface Plasmon Resonance Sensor DNA-Protein
binding

830 nm In Situ 12% Reflectivity

Single strand _ |
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(5nm thick) No Protein Adsorption
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here

Nelson BP, Frutos AG, Brockman JM, et al. ANALYTICAL CHEMISTRY 71 (18):
3928-3934 SEP 15 1999
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