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In the paper ”Relativistic effects on ground state properties of 4d and 5d transition metals” by C.
Elsässer, N Takeuchi, K M Ho, C T Chan, P Braun, M Fähnle. J. Phys.: Condens. Matter (1990) vol.
2 pp. 4371-4394, they showed ”Rose universal equation for energy vs volume curve” that was reported in
”Universal Binding Energy Curves for Metals and Bimetallic Interfaces” by J H Rose, J Ferrante, J R Smith,
Phys. Rev. Lett. (1981) vol. 47 pp. 675-678. In the Christian’s paper the equation was mis-typed (V 3

0

should be V 2
0 ).

The equation have three parameters that are used to fit the energy E vs volume V relation calculated
by first-principles calculations. E is defined by -(cohesive energy) and < 0. Cohesive energy is defined by
the energy required to form separated neutral atoms in the ground electronic state from the solid at 0 K 1
atm. The cohesive energies of Li and Si are 1.63 and 4.63 eV / atom, respectively.
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Here V0 is the volume where the energy E has minimum E0 < 0, and the B0 is the bulk modulus. If we
calculate the first and second derivative,
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For practical use, we can write
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where we assume E0 < 0. If we use eV for E and Å3 for V , the unit for B0 is given by
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= 160.317487 GPa (11)

For the use of Igor fitting, E0 → a, V0 → v,B0 → b, V → x, you can copy&paste the following text for the
fit-function.

f(x) = a*(1.0e0+3.0e0*v^(2.0e0/3.0e0)*b^0.5e0*(x^(1.0e0/3.0e0)-v^(1.0e0/3.0e0))/(-a*v)^0.5e0)*

exp(-3.0e0*v^(2.0e0/3.0e0)*b^0.5e0*(x^(1.0e0/3.0e0)-v^(1.0e0/3.0e0))/(-a*v)^0.5e0)

The lattice constants of Li(bcc, 78 K) and Si(diamond) are 3.491 and 5.430 Å, respectively. Then, V0(Li)
= 21.3 Å3 and V0(Si) = 20.0 Å3 The room-temperature bulk modulii B0 of Li and Si are 0.116 ×1011 and
0.988 ×1011 Pa, respectively. (11.6 GPa and 98.8 GPa)

2


