Rose universal curve of energy vs volume for first-principles calculation

Masahiro Yamamoto

1:01 pm June 2, 2022

In the paper "Relativistic effects on ground state properties of 4 d and 5 d transition metals" by C. Elsässer, N Takeuchi, K M Ho, C T Chan, P Braun, M Fähnle. J. Phys.: Condens. Matter (1990) vol. 2 pp. 4371-4394, they showed "Rose universal equation for energy vs volume curve" that was reported in "Universal Binding Energy Curves for Metals and Bimetallic Interfaces" by J H Rose, J Ferrante, J R Smith, Phys. Rev. Lett. (1981) vol. 47 pp. $675-678$. In the Christian's paper the equation was mis-typed (V_{0}^{3} should be V_{0}^{2}).

The equation have three parameters that are used to fit the energy E vs volume V relation calculated by first-principles calculations. E is defined by -(cohesive energy) and <0. Cohesive energy is defined by the energy required to form separated neutral atoms in the ground electronic state from the solid at 0 K 1 atm. The cohesive energies of Li and Si are 1.63 and $4.63 \mathrm{eV} /$ atom, respectively.

$$
\begin{align*}
E(V) & =E_{0}(1+\sigma) e^{-\sigma}, \quad \sigma=\frac{s-s_{0}}{\lambda}, \quad \lambda=\frac{1}{\left(36 \pi V_{0}^{2}\right)^{1 / 3}} \sqrt{\frac{-E_{0} V_{0}}{B_{0}}} \tag{1}\\
V & =\frac{4 \pi}{3} s^{3}, \quad V_{0}=\frac{4 \pi}{3} s_{0}^{3}, \quad s=\left(\frac{3 V}{4 \pi}\right)^{1 / 3}, \quad s_{0}=\left(\frac{3 V_{0}}{4 \pi}\right)^{1 / 3} \tag{2}\\
B_{0} & =\left.V_{0} \frac{d E^{2}}{d V^{2}}\right|_{V_{0}} \tag{3}
\end{align*}
$$

Here V_{0} is the volume where the energy E has minimum $E_{0}<0$, and the B_{0} is the bulk modulus. If we calculate the first and second derivative,

$$
\begin{align*}
\frac{d E}{d V} & =\frac{d E}{d \sigma} \frac{d \sigma}{d V}=E_{0}\left[e^{-\sigma}-(1+\sigma) e^{-\sigma}\right] \frac{d \sigma}{d V}=-E_{0} \sigma e^{-\sigma} \frac{d \sigma}{d V} \tag{4}\\
\sigma\left(V_{0}\right) & =0,\left.\quad \frac{d E}{d V}\right|_{V_{0}}=0 \tag{5}\\
\frac{d \sigma}{d V} & =\frac{d \sigma}{d s} \frac{d s}{d V}=\frac{1}{\lambda} \frac{1}{3}\left(\frac{3 V}{4 \pi}\right)^{-2 / 3} \frac{3}{4 \pi}=\frac{1}{4 \pi \lambda}\left(\frac{3 V}{4 \pi}\right)^{-2 / 3} \tag{6}\\
\frac{d E^{2}}{d V^{2}} & =\frac{d E^{\prime}}{d V}=\frac{d}{d V}\left[-E_{0} \sigma e^{-\sigma} \frac{1}{4 \pi \lambda}\left(\frac{3 V}{4 \pi}\right)^{-2 / 3}\right]=\frac{-E_{0}}{4 \pi \lambda} \frac{d}{d V}\left[\sigma e^{-\sigma}\left(\frac{3 V}{4 \pi}\right)^{-2 / 3}\right] \\
& =\frac{-E_{0}}{4 \pi \lambda}\left[\frac{d \sigma}{d V} e^{-\sigma}\left(\frac{3 V}{4 \pi}\right)^{-2 / 3}-\sigma e^{-\sigma} \frac{d \sigma}{d V}\left(\frac{3 V}{4 \pi}\right)^{-2 / 3}+\sigma e^{-\sigma} \frac{-2}{3}\left(\frac{3 V}{4 \pi}\right)^{-5 / 3} \frac{3}{4 \pi}\right] \tag{7}\\
\left.\frac{d E^{2}}{d V^{2}}\right|_{V_{0}} & =\frac{-E_{0}}{4 \pi \lambda} \frac{1}{4 \pi \lambda}\left(\frac{3 V_{0}}{4 \pi}\right)^{-2 / 3} e^{0}\left(\frac{3 V}{4 \pi}\right)^{-2 / 3}=\frac{-E_{0}}{(4 \pi)^{2}}\left(36 \pi V_{0}^{2}\right)^{2 / 3} \frac{B_{0}}{-E_{0} V_{0}}\left(\frac{3 V_{0}}{4 \pi}\right)^{-4 / 3} \\
& =\frac{4^{2 / 3} 3^{4 / 3} \pi^{2 / 3} V_{0}^{4 / 3}}{4^{2} \pi^{2}} \frac{B_{0}}{V_{0}} \frac{4^{4 / 3} \pi^{4 / 3}}{3^{4 / 3} V_{0}^{4 / 3}}=\frac{B_{0}}{V_{0}} \tag{8}
\end{align*}
$$

For practical use, we can write

$$
\begin{align*}
E(V) & =E_{0}\left[1+\frac{\left(\frac{3 V}{4 \pi}\right)^{1 / 3}-\left(\frac{3 V_{0}}{4 \pi}\right)^{1 / 3}}{\frac{1}{\left(36 \pi V_{0}^{2}\right)^{1 / 3}} \sqrt{\frac{-E_{0} V_{0}}{B_{0}}}}\right] \exp \left[-\frac{\left(\frac{3 V}{4 \pi}\right)^{1 / 3}-\left(\frac{3 V_{0}}{4 \pi}\right)^{1 / 3}}{\frac{1}{\left(36 \pi V_{0}^{2}\right)^{1 / 3}} \sqrt{\frac{-E_{0} V_{0}}{B_{0}}}}\right] \tag{9}\\
& =E_{0}\left[1+3 V_{0}^{2 / 3} \sqrt{B_{0}} \frac{V^{1 / 3}-V_{0}^{1 / 3}}{\sqrt{-E_{0} V_{0}}}\right] \exp \left[-3 V_{0}^{2 / 3} \sqrt{B_{0}} \frac{V^{1 / 3}-V_{0}^{1 / 3}}{\sqrt{-E_{0} V_{0}}}\right] \tag{10}
\end{align*}
$$

where we assume $E_{0}<0$. If we use eV for E and \AA^{3} for V, the unit for B_{0} is given by

$$
\begin{align*}
\AA^{3} \frac{\mathrm{eV}}{\AA^{6}} & =\frac{\mathrm{eV}}{\AA^{3}}=\frac{1.60217487 \times 10^{-19} \mathrm{~J}}{10^{-30} \mathrm{~m}^{3}}=1.60217487 \times 10^{11} \frac{\mathrm{~J}}{\mathrm{~m}^{3}}=160.317487 \mathrm{G} \frac{\mathrm{Nm}}{\mathrm{~m}^{3}} \\
& =160.317487 \mathrm{GPa} \tag{11}
\end{align*}
$$

For the use of Igor fitting, $E_{0} \rightarrow a, V_{0} \rightarrow v, B_{0} \rightarrow b, V \rightarrow x$, you can copy\&paste the following text for the fit-function.

```
f(x) = a*(1.0e0+3.0e0*v^(2.0e0/3.0e0)*b^0.5e0* (x^ (1.0e0/3.0e0)-v^(1.0e0/3.0e0))/(-a*v)^0.5e0)*
exp(-3.0e0*v^}(2.0e0/3.0e0)*b^0.5e0*(x^(1.0e0/3.0e0) -v^(1.0e0/3.0e0))/(-a*v)^0.5e0)
```

The lattice constants of $\mathrm{Li}(\mathrm{bcc}, 78 \mathrm{~K})$ and $\mathrm{Si}\left(\right.$ diamond) are 3.491 and $5.430 \AA$, respectively. Then, $V_{0}(\mathrm{Li})$ $=21.3 \AA^{3}$ and $V_{0}(\mathrm{Si})=20.0 \AA^{3}$ The room-temperature bulk modulii B_{0} of Li and Si are 0.116×10^{11} and $0.988 \times 10^{11} \mathrm{~Pa}$, respectively. (11.6 GPa and 98.8 GPa)

