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For simplicity Poisson equation is considered here, i.e. no charge except at the interface between the
electrode and the medium.
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φ = 0 (1)

In the present work we will consider the potential and charge distribution at an edge or corner of the
two conducting(metal) plate. We just follow the discussion done by J. D. Jackson’s book on ”Classical
Electrodynamics, 3rd edition, Chap. 2, Section 11”. In the Fig.1 the corner between the two conducting
plate is shown.
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It is convenient to use cylindrical coordinate r, θ, z. In the z direction the potential and charges are the
same, then we will consider the r, θ problem.
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The radial direction er and the angular directon erdθ as shown in Fig.1 is perpendicular, then the gradient
of the potential φ can be defined
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If we can separate the solution in r and θ variables,

φ(r, θ) = R(r)Θ(θ) (13)
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The general solutions for ω ̸= 0 are

R(r) = arω + br−ω (16)
Θ(θ) = c cos(ωθ) + d sin(ωθ) (17)

and for ω = 0

R(r) = α + β ln r (18)
Θ(θ) = γ + δθ (19)

From the boundary conditions, i.e. φ(r, θ = 0) = V, φ(r, θ = θ0) = V

c = 0, [sin 0 = 0, sin(ωθ0) = 0], δ = 0 (20)

r = 0 is included, then

b = 0, β = 0 (21)

and

sin(ωθ0) = 0, ω =
nπ

θ0
, n = 1, 2, 3, .... (22)

Then we have

φ(r, θ) = V +
∞∑

n=1

anrnπ/θ0 sin(nπθ/θ0) (23)

Near r = 0 the n = 1 term is important, then we can write

φ(r, θ) ≅ V + a1r
π/θ0 sin(πθ/θ0) (24)
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The electric field near r = 0 is given by
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From the Gauss theorem at the surface, we can write with the unit vector n form metal to vacuum

n · [Dvac − Dmetal] = σmetal|vac, Dmetal = 0

The surface charge density at φ = 0 and φ = θ0 are equal and can be approximated

σ(r) = Dvac = ϵϵ0Erdθ = −a1
πϵϵ0
θ0

rπ/θ0−1 (28)

When θ0 is small, the power of r becomes large and no charge accumulation at the corner r = 0. For
flat surface θ0 = π, there is no dependence on r. When θ0 > π the power π/θ0 − 1 of r becomes negative,
and at the edge the surface charge density become singular.
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Figure 2: coner and edge with θ0 = π/4, π/2, 3π/2, 7π/4.

Table 1: r sigularity at the coner or edge

θ0 π/θ0 − 1 rπ/θ0−1

0 +∞
π/4 3 r3

π/2 1 r
π 0 1

3π/2 -1/3 r−1/3

7π/4 -3/7 r−3/7

2π -1/2 r−1/2
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