CURRENT TOPICS (1)

気液および液液界面吸着の測定

田嶋和夫

東京都立大学理学部化学教室 〒158 東京都世田谷区深沢 2-1-1

(1982年11月2日 受理)

Adsorption Measurements of Vapor-Liquid and Liquid-liquid Interfaces

Kazuo TAJIMA

Department of Chemistry, Faculty of Science, Tokyo Metropolitan University. 2-1-1 Setagaya-ku, Tokyo, 158 JAPAN

(Received November 2, 1982)

The adsorption of solute species in solutions at a vapor-liquid or a liquid-liquid interface is expressed in terms of relative adsorption according to the Gibbs convention. Experiments are described in which the adsorbed amount may be measured at the air-water and oil-water interfaces. It is shown that Gibbs adsorption isotherms derived the surface thermodynamic theory explain the observed isotherms measured by the the radiotracer method using tritiumlabelled non-ionic and ionic surfactants. In the oil-water system containing a surfactant, the pressure coefficient of the interfacial tension gives us a thickness parameter τ which denotes the distance between the Gibbs dividing surfaces for oil and water phases at the interphase. The physical interpretation of τ is discussed.

1. はじめに

気体と液体または液体と液体との界面の境界領域では 溶媒と溶質の密度がどのように分布しているのかなにも 知られていない。溶液表面への溶質の吸着は固体表面の 吸着と本質的に異り,溶媒の界面をどこに選ぶかによっ て変ってしまう。そのため,溶液界面では溶質の吸着は 溶媒の吸着に対する相対吸着(または表面過剰)として表 わさている。いわゆる Gibbs の吸着である。 そこで,

まず界面熱力学における液体界面の取り扱いを簡単に示 し、次に、最近の報告から相対吸着についての熱力学的 取り扱いや実験による測定などをわかりやすく紹介す る。なお、界面熱力学の詳細な議論は成書¹⁾または総 説^{2,3)}に委ねることにする。

2. Gibbs 界面と相対吸着量

簡単のため、空気の成分を無視して、成分 i の希薄水溶 液とその蒸気との間の界面を考える。 Fig. 1 に示すよ うな境界領域を考える。吸着量は相対量で表わされるた め境界領域の溶媒のどこに基準面を定めるかによって変 る。そこで, Gibbs は境界領域での密度勾配に直角方向 に分割面 (x=0) を取ったとき, 気相 (α) と液相 (β) 中 の溶媒(1)の密度を C_1 および境界領域の位置 x での 密度を $C_1(x)$ とするとき, 溶媒に関して

$$\int_{-l}^{0} (C_1^{\beta} - C_1^{\beta}(x)) dx = \int_{0}^{+l} (C_1^{\alpha}(x) - C_1^{\alpha}) dx \quad (1)$$

を満たすような等分子数分割界面 (equimolecular dividing surface) を基準面とした⁴⁾。 すなわち, (1)式 は溶媒である水の相対吸着が

 $I'_{1}{}^{(1)} = 0 \tag{2}$

になるような界面 (Fig. 1-b) を意味する。(2)式を Gibbs の規約と呼ぶ。溶媒を(2)式のような幾何学的 界面とすることによって、溶媒に対する溶質成分 i の相 対吸着量 $\Gamma_i^{(1)}$ は

$$\Gamma_{i}^{(1)} = \int_{-l}^{0} [C_{i}^{\theta}(x) - C_{i}^{\theta}] dx + \int_{0}^{+l} [C_{i}^{\alpha}(x) - C_{i}^{\alpha}] dx$$
(3)

で表わされる。(3)式の右辺は界面の幾何学的関係から 容易に求めることができる¹⁻³⁾。

溶媒が Gibbs の規約に従うとすると、系の全体積 V は

Fig. 1 The Gibbs dividing surface at the vapor (α) -liquid (β) interface. C is moles per unit volume. (a) Real surface of a 1 cm^2 column of an one-component system. The gradient of concentration in the interphase is shown by $C_1^{\alpha}(x)$ and $C_1^{\beta}(x)$. (b) The Gibbs dividing surface. Shaded areas indicate the Gibbs construction for locating the $\Gamma_1^{(1)}=0$ dividing surface. (c) Surface excess $\Gamma_1^{(1)}$ of component *i*, (see text).

$$V = V^{\alpha} + V^{\beta} \equiv V^{\alpha(1)} + V^{\beta(1)} \tag{4}$$

となる。 ここで上つき(1)は溶媒が Gibbs の規約に従うことを示す。溶媒および溶質の全モル数をそれぞれ n1 および ni とすると,

$$n_1 = n_1^{\alpha} + n_1^{\beta} = V^{\alpha} C_1^{\alpha} + V^{\beta} C_1^{\beta} + \Gamma_1 A$$
$$= V^{\alpha(1)} C_1^{\alpha} + V^{\beta(1)} C_1^{\beta}$$
(5)

および

$$n_{i} = n_{i}^{\alpha} + n_{i}^{\beta} + \Gamma_{i}A = V^{\alpha}C_{i}^{\alpha} + V^{\beta}C_{i}^{\beta} + \Gamma_{i}A$$
$$= V^{\alpha(1)}C_{i}^{\alpha} + V^{\beta(1)}C_{i}^{\beta} + \Gamma_{i}^{(1)}A \qquad (6)$$

となる。ここで Γ_i は成分 i の表面密度(または吸着 量), Aは界面の面積である。溶媒に関する(1)と(2) 式の条件と(4)式とから

$$V^{\alpha} - V^{\alpha(1)} = V^{\beta(1)} - V^{\beta} \tag{7}$$

となる (Fig. 1-b の斜線部の面積が互に等しい)ので, (5)と(6)式より,

$$\Gamma_{i}^{(1)} = \Gamma_{i} - \frac{C_{i}^{\beta} - C_{i}^{\alpha}}{C_{1}^{\beta} - C_{1}^{\alpha}} \Gamma_{1}$$
(8)

となる。

溶質が界面活性剤のような不揮発性成分 ($C_i^{\alpha} \approx 0$) で, さらに溶媒が $C_i^{\theta} \gg C_i^{\alpha}$ の場合, (8)式は

$$\Gamma_{i}^{(1)} = \Gamma_{i} - \frac{C_{i}^{\beta}}{C_{1}^{\beta}} \Gamma_{1}$$
(9)

と簡略化される。*['i⁽¹⁾* は Fig. 1-c の黒部に相当する。 すなわち,右辺第1項は界面における溶質の全量を,第

3. 気液界面の吸着

3.1 Gibbs 吸着式

吸着式を導入するために、気相と液相の平坦な界面を 含む多成分2相系を考える。系の全体積をV,温度をT, 圧力をp,成分iのモル数を n_i ,その化学ポテンシャ ルを μ_i とすると、系全体の Gibbs-Duhem 式は

$$-Vdp + sdT + Ad\gamma + \sum_{i=1}^{j} n_i d\mu_i = 0$$
 (10)

となる。ここで、 s はエントロピーで, γ は表面張力で ある。同様に、気相および液相についてもそれぞれ、

$$-V^{\alpha}\mathrm{d}p + s^{\alpha}\mathrm{d}T + \sum_{i=1}^{j} n_i{}^{\alpha}\mathrm{d}\mu_i = 0$$
(11)

および

$$-V^{\boldsymbol{\beta}} \mathrm{d}\boldsymbol{p} + s^{\boldsymbol{\beta}} \mathrm{d}\boldsymbol{T} + \sum_{i=1}^{j} n_{i}{}^{\boldsymbol{\beta}} \mathrm{d}\boldsymbol{\mu}_{i} = 0$$
(12)

となる。(10) 式から(11) および(12) 式を引くと,

$$-\frac{V-V^{\alpha}-V^{\beta}}{A}\mathrm{d}p+s^{\sigma}\mathrm{d}T+\sum_{i=1}^{j}I^{\prime}_{i}\mathrm{d}\mu_{i}+\mathrm{d}\gamma=0$$
(13)

$$s^{\sigma} \equiv \frac{s - s^{\alpha} - s^{\mu}}{A} \tag{14}$$

また、
$$\Gamma_i$$
は(6)式より

$$\Gamma_{i} = \frac{n_{i} - n_{i}^{\alpha} - n_{i}^{\beta}}{A} = \frac{n_{i} - V^{\alpha} C_{i}^{\alpha} - V^{\beta} C_{i}^{\beta}}{A}$$
(15)

である。

空気相を無視する場合,気液界面の表面過剰体積(V^{*} =V-V^{*}-V^{\$})は0となる。そこで,(13)式は

$$-d\gamma = s^{\sigma} dT + \sum_{i=1}^{j} \Gamma_{i} d\mu_{i}$$
(16)

となる。ところで、(16)式の表面張力 γ は *j*+1 個の変 数(自由度の数)によって決まる。しかし、実際には*j* 個 の独立変数しか存在しないため、(16)式の *s^a* および Γ_i は不定となる。 そこで1 変数を減らすため、溶媒の 化学ポテンシャル μ_i は *T* および $\sum_{i=2}^{j} \mu_i$ の関数で表わ され、 γ 項を含まないとする。この仮定は溶媒に関して、 Fig. 1-b の $\Gamma_1^{(1)}=0$ の分割基準面を考えたことに相当 する。(11) および(12) 式をそれぞれ V^a と V^{β} で割り、 単位体積当りの Gibbs-Duhem 式を出し、そして両相の 圧力を等しい(平担界面のため)と置くと、溶媒の化学 ポテンシャル変化は

$$(C_1{}^{\boldsymbol{\theta}} - C_1{}^{\boldsymbol{\alpha}}) \mathrm{d}\mu_1 = -(s^{\boldsymbol{\theta}} - s^{\boldsymbol{\alpha}}) \mathrm{d}T - \sum_{i=2}^J (C_i{}^{\boldsymbol{\theta}} - C_i{}^{\boldsymbol{\alpha}}) \mathrm{d}\mu_i$$
(17)

で表わされる。(17)式を(16)式の *i*=1 の項に代入すると,

$$-d\gamma = \left(s^{\sigma} - \frac{s^{\theta} - s^{\alpha}}{C_{1}^{\theta} - C_{1}^{\alpha}}\Gamma_{1}\right)dT$$
$$+ \sum_{i=2}^{j} \left(\Gamma_{i} - \frac{C_{i}^{\theta} - C_{i}^{\alpha}}{C_{1}^{\theta} - C_{1}^{\alpha}}\Gamma_{1}\right)d\mu_{i}$$
$$= s^{\sigma(1)}dT + \sum_{i=2}^{j}\Gamma_{i}^{(1)}d\mu_{i}$$
(18)

となる。ここで 500 は

$$s^{\sigma(1)} \equiv s^{\sigma} - \frac{s^{\beta} - s^{\alpha}}{C_1^{\beta} - C_1^{\alpha}} \Gamma_1$$

で相対表面エントロピーであり, *l'i*⁽¹⁾ は(8)式の相対 吸着量である。

温度一定のとき(18)式は

$$-\mathrm{d}\gamma = \sum_{i=2}^{j} \Gamma_{i}{}^{(1)}\mathrm{d}\mu_{i} \tag{19}$$

となる。これを Gibbs の吸着等温式という。(19)式よ り計算される相対吸着量と実験で測定される吸着量との 比較や多成分系への吸着式の応用などは後節で示す。

非イオン性界面活性剤 (D)の水溶液のように2 成分2 相系の最も簡単な場合,水に Gibbs の規約を適用する と、($\Gamma p^{(1)}$ は簡略のため Γp とする) (19)式は

$$-d\gamma = \Gamma_D d\mu_D \tag{20}$$

となる。一方,水溶液中の化学ポテンシャルは $\mu_D = \mu_{D,0} + \mathbf{RT} \ln a_D$ (21)

となる。ここで *a*_D は活量である。溶液の濃度が臨界ミセル濃度 (CMC) 以下の十分希薄で理想溶液と考えると, (20) と (21) 式より,

$$\Gamma_{D} = -\frac{1}{RT} \left(\frac{\partial \gamma}{\partial \ln C_{D}} \right)_{T} = -\frac{1}{2.303 \cdot RT} \left(\frac{\partial \gamma}{\partial \log C_{D}} \right)_{T}$$
(22)

となる。溶液の表面張力 γ の濃度 C_D 依存性を測定し、 その $\gamma \sim \log C_D$ 曲線の勾配と (22) 式から Γ_D を求めるこ とができる。

※液濃度が CMC 以上の場合には、ミセルを1つの 化学種* と考え(19)式を解けばよい。ただ、希薄なミセ ル溶液では、ミセルの活量はほとんど無視できるため、 吸着へのミセルの寄与は一般に考慮する必要がない。こ

* 化学種

界面活性剤ミセルは数10~100個の単分子会合体で ある。この会合体を溶液成分の1つと考え(19)式を 解く。ミセル溶液の理論において,現在,ミセルを 相(phase)として扱う考え方と、単分子とミセルの 間に質量作用の法則が成立する会合体として扱う考 え方との2通りがあり,いずれが妥当か未解決であ る。前者の考えではミセルを成分として考えること ができないので,吸着に対するミセルの影響は無関 係になる。 のことは後節で示す吸着量の実測値が CMC の前後で 変らないことからも明らかである。しかし、イオン性界 面活性剤の濃厚ミセル溶液の場合にはミセルの活量は無 視できなくなる⁵⁰。

3.2 吸着量の実測

水溶液から気水界面へ吸着した溶質の測定には、泡沫 分離法⁶,水面の薄層切削法⁷,水面反射光の楕円率測 定法⁸,表面電位法⁹,および放射能測定法¹⁰、などがあ る。精度や難易さに差はあるが、これらの測定法はいず れも必ず界面領域とそれに隣接する適当な深さるの内部 溶液相を含めた溶質のモル数 $n_i(\delta)$ を測定することにな る (Fig. 1-c 参照)。いま、深さ δ 内に存在する溶媒の モル数 $n_i(\delta)$ とすると(9)式より、

$$\Gamma_{i}^{(1)} = \frac{n_{i}^{(1)}}{A} = \frac{n_{i}(\delta)}{A} - \frac{C_{i}^{\theta}}{C_{1}^{\theta}} \cdot \frac{n_{i}(\delta)}{A}$$
(23)

となる。しかし、 $n_1(\delta)$ は実際には測定不可能な 値であ るため、(23) 式から直ちに $\Gamma_1^{(1)}$ を決定することはでき ない。そこで、溶質が吸着をしない他の溶液系を用い て、同一の測定条件下で界 面より 深さ δ 内の溶質量 $n_i'(\delta)$ を測定することができるならば、

$$\frac{n_i'(\delta)}{A} - \frac{C_i^{\beta}}{C_1^{\beta}} \cdot \frac{n_i(\delta)}{A} = 0$$
(24)

より、($C_i^{\theta}/C_i^{\theta}$)・ $n_i(\delta)$ を実験的に求めることができる。 その結果、 $\Gamma_i^{(1)}$ は(23)と(24)式から実験的に決定され る。しかし、実際問題として、(23)式の右辺第2項と (24)式の左辺第2項が同一であるような溶液系を見い出 すことは不可能に近い。そのため、一般には $\Gamma_i^{(1)}$ の決 定にはなんらかの仮定かまたは希薄溶液系であるなどの 条件を必要とする。

種々の直接測定法のうち,精度や信頼性から,軟 β 緑 を放出する核種を用いたラジオトレーサー法が現在最適 と考えられている。特に、ⁱH をトレーサーに用いる場 合,核の適宜な寿命,標識の容易さ,高い測定精度など の点で、ⁱ⁴C や ³⁵S を用いる場合より優れている。たと えば,標識核種が ³H と ⁱ⁴C という以外同一の実験系だ とすると、ⁱ⁴C (ε_{max} =154 KeV,水中最長飛跡 300 µm) を用いた場合の(24)式の左辺第1項の値は ³H (ε_{max} = 17.9 KeV,水中最長飛跡 6 µm) のそれの約 50 倍も大き い¹¹⁰。したがって、4.2 節で示すように、¹⁴C を用いる ことは溶液の濃度がきわめて希薄でしかも吸着量が大き いような溶液系以外は不適当である。

³H- β 線の使用は吸着量測定には有利であるが、その 反面、放射線の検出が¹⁴C や ³⁵S に比べて難かしいと いう技術上の問題を伴う。 **Fig. 2** は気液および油水界 面での ³H- β 線の放射能測定装置である^{12,13}。 **装置**A は気液界面の放射能を測定するとき用いられる¹²⁾。電気

Fig. 2 Schematic representation of apparatus for determination of adsorbed amount at the air/water (A) and oil/water (B) interfaces. 1, pulse height analyzer; 2, coincidence circuit; 3, linear amplifiers; 4, high voltage supplier; 5, phototubes; 6, optical prism (polyacrylate); 7, plastic scintillator sheet; 8, air phase; 9, radioactive detergent solution, 10, pointer electrode; 11, ammeter; 12, syringe; 13, Teflon trough; 14, Pyrex glass; 15, toluene (oil) phase.

指針10の断続信号により放射性溶液9の水面上0.8mm までプラスチックシンチレーター7のプローブを接近さ せる。液面上の全³H-β線は蒸気相8を通過後,7でシ ンチラに変えられ,光学直角プリズム6で等分割され, 光電子増倍管5 (EMI 9536 s) でパルス6となり, 同時 放電回路2を通って波高分析器1 (Aloka, FSC-700) で 計測される。³H-β線の検出効率は 1.5% である。装置 Bは油水界面用である¹³⁾。あらかじめ発光剤 (2,5-diphenyloxasol および 1, 4-bis (5-phenyloxasoryl) benzene) を溶かしたトルエン相 15 を 9 の上に静かに置く。 界面の全³H-β線は発光剤でシンチラに変えられ,6を 通して,1で計測される。この際,トルエン相はパイレ ックスガラス14 (np²⁰=1.474) で気泡が入らないように 密閉される。 ガラス 14 とプリズム 6 の間はシリコーン 油(信越化学, KF 96 H, 6000 cs) で光結合*される。検 出効率は 5.6% である13)。

³H 標識放射性界面活性剤は,まず³H 標識アルキル アルコールを合成し,次に親水基を適当に変えることに より,イオン性界面活性剤^[4],非イオン性界面活性剤^[5]

* 光結合

photocoupling のことで、トルエン相15中で発生 したシンチラがパイレックスガラス14を通って化 学プリズム6に伝わるとき、パイレックスガラスと プリズムとの界面で光の反射損を極小にするため、 光伝送媒質を空気の代りに、パイレックスガラスと プリズムの屈折率に近いシリコン油で置き代えるこ と。同様の結合はプリズムとホトマル5との接面に も施されている。

Fig. 3 Surface tension vs. concentration curves of D(EO)^κ solution at 30°C. ○: Wilhelmy plate method, △: drop-weight method.

および両イオン性界面活性剤¹⁶⁾など目的に合わせて合成 することができる。

3.3 計算値と実測値との比較

最も簡単な系である2 成分2 相系の非イオン性界面活 性剤: hexaoxyethylene dodecyl ether (D(EO) $_6$) 水溶 液の例を示す¹⁷⁾。Fig. 3 は D(EO) $_6$ 水溶液の γ ~log Co 曲線で, 滴重法* と Wilhelmy 法** とで測定した値を 示す。 滴重法の γ 値が全体に大きいのは, その測定法 上,平衡の表面張力が測定されにくいためである。Fig.4 の実線は CMC 以下の濃度について (22) 式から計算 した Γ_D を示す。 一方, ³H 標識 hexaoxyethylene dodecyl ether (³HD(EO) $_6$)の水溶液について, Fig. 2-A の装置で液面放射能を計測し,吸着量に換算すると, Fig. 4 の〇印となる。この測定において, (24) 式の

* 滴重法 最も簡便な表面張力の測定法である。垂直に保たれ た半径rのガラス管の先端に,徐々に成長する液滴 を作り, 1~2分後に自然落下するようにする。落 下した1滴の重量 mg から溶液の表面張力rは $\gamma =$ (mg/r)×Fの式より求まる。ここでFは液滴の離 脱に関する補正項で,Harkins-Brown の補正表と して与えられている(参照 Ref. 19. p. 4)。

** Wilhelmy 法
吊板法とも呼ばれる。清浄な顕微鏡のカバーガラスの下端が水平になるように、上端にフックを取りつけ、電気テンビンに釣り下げる。一方、シャーレに溶液を入れ、ラボラトリージャッキで、カバーガラスの下端と溶液水面が丁度接するまで、静かに上昇させる。カバーガラスの周長 L に働く表面張力 γ (下向きの力)は電気テンビンの張力 mg (上向きの力)として測定される。 溶液の表面張力 γ は γ=mg/L より求まる。通常、この方法は補正を必要と

れる。(参照 Ref. 19. p. 5)。

せずに、信頼性の高い平衝表面張力の測定に用いら

- 29 -

Fig. 4 The test of Eq. (22) at 30°C. ○: observed value, -: calculated values using data of (A) drop-weight method and (B) Wilhelmy plate method. Arrows show the CMC.

 $n p'(\delta)/A の 値 は 次 の ような 非 吸 着 性 の 放射 性 溶液 から 測$ 定 さ れた。³ HD(EO)₆ の 合成 に 使 用 し た の と 同 一 の 比 放射能の³ H 標識 dodecanol (溶質 と 考える)を³ HD(EO)₆水 溶液 と 同 一 の 重量 モ ル 濃度 に なる ように 非 放射性dodecanol (DOH, 溶媒 と 考える)で 調製 する。 そ し て ,放射性 DOH 溶液 に ついて 液 面 上 の 放射能 と 濃度 の 関 $係 を 測定 す れば , <math>n p'(\delta)/A$ の 値 と なる。

溶媒が水と DOH の違いによる ${}^{3}\text{H}-\beta$ 線の吸収係数 の違いは約 2% 以下である¹¹⁾。また (23) 式の $n_{D}(\delta)/A$ 項への $(C_{D}{}^{\beta}/C_{1}{}^{\beta})\cdot n_{1}(\delta)/A$ 項への寄与は溶質 (${}^{3}\text{H}$ 標識 化合物) 濃度が十分希薄なため、きわめて小さい (5% 以下)¹⁷⁾。結果として、吸着系の溶媒が水で、非吸着系 が DOH であっても、境界領域における溶媒の分布の差 異はほとんど無視することができる。

Fig. 4 の相対吸着等温線は Wilhelmy 法の $\gamma \sim \log C_D$ 曲線から計算した値と実測値が実験上の誤差や仮定 を考慮に入れてもよく一致することを示す。この事は (i)(22)式が実験によって検証されたこと,(ii)溶液界 面では Gibbs の相対吸着量が実験で求まる吸着量と一 致すること,(ii)平衡な表面張力濃度曲線を測定すれ ば,吸着量は計算で求めることができるなどを結論とす る。

3.4 Gibbs 吸着式の応用

強電解質型のイオン性界面活性剤の吸着量を与える式 は溶質の電気的中性条件と(19)式とから得られる。しか し、溶質イオン種の電気的中性条件は境界領域では水の 解離のため成立しなくなるとする考えもある¹⁸、この問 題を解くため、³H 標識イオン性界面活性剤: sodium dodecylsulfate, (³HDNa)を用いて、放射能測定から吸 着量の測定が行われた。測定側は電気的中性条件が成り 立つとして導いた式で計算した値とよく一致することが 確められた¹²⁹。この事実からイオン性界面活性剤の吸着 について,次の知見が得られた。Gibbs 吸着式は $\Gamma_1^{(1)}$ =0の規約以外,吸着界面の厚さについてなんらの制約 もないので,界面活性イオンの対イオンは溶液内に拡散 した吸着域を作り,そして表面に吸着している界面活性 なイオン種と非熱力学的な電気的中性条件を保ってい る。

界面活性なイオンと同符号の他の無機イオン種, すな わち副イオンが溶液中に存在する系を考える。副イオン は界面に吸着をするのか吸着をしないのかについての問 題はいまだに実験によって直接解明されていない。しか し, Gibbs 吸着式と³H 標識界面活性イオンの実測の吸 着値を用いることによって, 界面近傍での副イオンの挙 動(吸着)を知ることができる。

この系の Gibbs 吸着等温式を考える¹⁹。 一般に, n価のカチオン M^{n+} を共通イオンとする界面活性剤 MD_n と無機電解質 MS_n との混合水溶液系を考える。 MD_n と MS_n とは共に水中で完全解離をしていて, 各塩の平均 活量係数 (f_{\pm}) は Debye-Hückel の第一次近似式に従 うとする。すなわち,

$$\left(\frac{\partial \ln f t}{\partial C_i}\right)_j = \left(\frac{\partial \ln f t}{\partial C_j}\right)_i \tag{25}$$

溶液中の2種類の中性成分に関する化学ポテンシャルは $\mu^{MD} = \mu_M + n \mu_D$ (26)

$$\mu^{MS} = \mu_M + n\mu_S \tag{27}$$

で,また吸着領域の溶質イオン種についての電気的中性 条件

$$n\Gamma_M = \Gamma_D + \Gamma s \tag{28}$$

とを用いると、(19) 式から各イオンの相対吸着量は

$$\Gamma_{D} = n \Gamma^{MD} = \frac{1}{n + q'} [(n + q' X^{MS}) \mathbf{I}_{MS} - q' X^{MD} \mathbf{I}_{MD}]$$
(29)

$$\Gamma_{s} = n\Gamma^{MS} = \frac{1}{n+\phi} [(n+\phi X^{MD})\boldsymbol{I}_{MD} - \phi X^{MS} \boldsymbol{I}_{MS}]$$
(30)

$$\Gamma_{M} = \Gamma^{MD} + \Gamma^{MS} = \frac{1}{n+\psi} [I_{MD} + I_{MS}]$$
(31)

となる。ここで上つき MD と MS はそれぞれの塩につ いての値である。 ϕ はイオンの活量係数に関するパラメ - タ - で

$$\psi \equiv 1 - n(n+1)\boldsymbol{A}(I)^{1/2} \tag{32}$$

である。(32)式の **A** は Debye-Hückel 理論の係数 (水, 30℃ で **A**=0.516) で, *I* はイオン強度である。**I**_{MD} お よび **I**_{MS} は

$$I_{MD} \equiv \left(\frac{-\partial \gamma}{RT\partial \ln C^{MS}}\right)_{T, MD}$$
(33)

$$I_{MS} = \left(\frac{-\partial \gamma}{RT \partial \ln C^{MD}}\right)_{T,MS}$$
(34)

である。 I_{MD} はたとえば、MDの濃度 C^{MD} を一定にして、MSの濃度 C^{MS} を変えたときの表面張力濃度曲線、 $\gamma \sim \log C^{MS}$ の勾配から計算される。 X^{MD} は塩の混合分率で、

 $X^{MD} = \frac{C^{MD}}{C^{MS} + C^{MD}} \quad , \quad X^{MS} + X^{MD} = 1$

である。(29), (30)および(31)式は次のような系にも適 用できる。

- i) イオン溶液が理想溶液と考えられるとき、ぐ=1 と する。
- ii) MSn 型の塩が共存しないときは、*I_{MD}=0*, *C^{MS}=0* と置く。そしてこの場合、MDn はいずれが界面活 性イオンであってもよい。

実験は簡単にするために、n=1の場合について行われた²⁰⁾。溶液は sodium dodecylsulfate と NaCl の混合水溶液である。界面活性な D⁻イオンの吸着量は³HDNa を用いて実測された。この溶液の ($\gamma \sim \log C^{MS}$)_{MD} および ($\gamma \sim \log C^{MD}$)_{MS} を測定し、(29) および(30) 式 (n=1)から界面活性イオン吸着量 Γ_n および副イオンの吸着量 Γ_{Cl} を計算し、それらを **Fig.5**の実線で示してある。 実測された D⁻ イオンの吸着量は Fig.5 の〇印で示す。 D⁻ イオンの計算値と実測値がよい一致を示すので、Cl⁻ イオンの吸着等温線は高い信頼性をもつ。結論として、D⁻ イオンが強い吸着をした界面では、たとえ

Fig. 5 The adsorption isotherms of Γ_{D-} and Γ_{CL-} at the surface of DNa solution with NaCl at concentration of 1.0 mmol dm⁻³ (25°C). \bigcirc : observed value, — : calculated values from Eqs. (29) and (30) putting n=1.

対イオンが境界領域の溶液内に拡散して存在していて も、副イオンの Cl⁻ イオンの相対吸着量は0に近い負 の値になることが明らかとなった。しかし、この現象か ら D⁻ イオンの吸着膜に隣接する下層液中で、D⁻ イオ ン自身も負の吸着になるということはいえない。最近, 尾関らは dodecyl dimethylammonium chloride-NaCl 系について、副イオンの負吸着を求めている²¹⁾。

液液界面の吸着

4.1 Gibbs 吸着式と相対吸着

界面活性剤の水溶液相と油相(空気相でも理論的扱い は同じ)とが接した界面における吸着を考える。系は簡 単のため3成分2相系とする。(13)式より

$$-\mathrm{d}\tau = s^{\sigma}\mathrm{d}T - \tau\mathrm{d}p + \sum_{i=1}^{3}\Gamma_{i}\mathrm{d}\mu_{i}$$
(35)

となる。ここでては

$$\tau \equiv \frac{V - V^{*} - V^{*}}{A} \tag{36}$$

で、水溶液相と油相との境界領域の厚さである。上つき wとのは水相と油相を示す。成分1,2 および3 は水, 油および溶質を表わす。(35)式の7は5つの変数によっ て決まる筈であるが、実際には3つの変数しか取りえな い。そこで、油水界面における Gibbs の規約は

$$\tau = 0 \tag{37}$$

と置かれる²²⁾。その結果、3変数となり(35)式は気液界 面の(18)式と同様に、

 $-d\gamma = s^{\bullet(G)}dT + \Gamma_{2}^{(G)}d\mu_{2} + \Gamma_{3}^{(G)}d\mu_{3}$ (38) となる。ここで上つき (G)は (37)式の規約を示す。

温度一定で、イオン性界面活性剤水溶液の油水界面吸 着に(38)式を適用した例を示す¹³⁾。水相および油相の Gibbs-Duhem の関係式と溶質イオン種に関する電気的 中性条件を用いると、油水界面における Gibbs 吸着等 温式は

$$\Gamma_{\mathbf{s}^{(G)}} = \Gamma_{2}^{(G)} \phi + \frac{1}{\nu} \left(\frac{-\partial \gamma}{\mathbf{R} T \partial \ln C_{\mathbf{s}}} \right)_{T}$$
(39)

となる。ここで

$$\phi \equiv \frac{x_1^{\bullet} x_3^{\bullet} - x_1^{\bullet} x_3^{\bullet}}{x_1^{\bullet} x_2^{\bullet} - x_1^{\bullet} x_2^{\bullet}} \Rightarrow \downarrow \bigcup \sum_{\theta}^{o, w} \sum_{i=1}^{3} x_i^{\theta} = 1$$

であり、 xはモル分率、 Cはモル濃度である。(39)式で 溶質が強電解質型のイオン性界面活性剤のとき、 ν=2 である。またイオン性界面活性剤の対イオンと共通なイ オンを持つ無機塩が過剰に存在するとき、または溶質が 非イオン性界面活性剤のときは ν=1 である。

溶質が強電解質型のイオン性界面活性剤で,油相への 溶解が無視でき、さらに油相の水の溶解度も小さいなら ば、 $x_1^{\circ} \approx 0$ および $x_3^{\circ} \approx 0$ となり、 $\phi \approx 0$ と置ける。

— 31 —

たがって (30) まけ箇畄に (Fo(G) た Fo と敗す)

- 32 ---

したがって, (39)式は簡単に (
$$\Gamma_{s}^{(G)}$$
を Γ_{s} と略す)

$$\Gamma_{3} = \frac{1}{\nu} \left(\frac{-67}{\mathbf{R}T\partial \ln C_{3}} \right)_{T}$$
(40)

となる。(40) 式は上の条件下での油水界面における Gibbs 吸着等温式である。

4.2 相対吸着量の計算値と実測値の比較

油水界面における吸着量の測定法はエマルション 法²³⁾,光学法^{24,25)},界面電位測定法²⁶⁾,および放射能測 定法^{13,27)}などがある。しかし,一般に気液界面での測定 に比較して,油相の存在が実験上大きな制約となるた め,実測例の報告は少ない。たとえ,測定されたとして も,Gibbsの相対吸着量との比較は精度および測定条件 などの上で問題となることが多い。例えば,気液界面で の泡沫法に対応するエマルション法がある。この方法は 微小油滴を大きさに分布がないように作ること,また吸 着量に無関係に,常に油滴の合一が起らないように安定 に保つことなどが問題となる。特に,油滴の安定性を得 るため,時には目的の界面活性剤以外の界面活性物質が 系に添加されることがある³²⁾。

光学法の1つである楕円率測定法は気液または液液界 面に存在する膜による偏光の楕円率の変化または光の位 相差を測定し,適宜な分子屈析率を用いて膜厚を求め る。この膜厚と剛体分子モデルから吸着量が算出され る。例えば sodium deoxycholate²⁴⁾ や palmitic acid²⁵⁾ などの報告がある。最近,水一四塩化炭素界面に吸着し た界面活性なイオン性染料分子の共鳴ラマンスペクトル の研究が報告された²⁸⁾。この方法は分子の特性吸収から 膜状態や添加物との相互作用などを知るには適している が,膜密度を求めるのには適していないようである。

放射能測定法は液液界面の吸着量測定にも適用され る。Graham らは¹⁴C 標識 cetyl trimethylammonium bromide (¹⁴C-CTAB)の水溶液相とトルエン相との界 面の吸着量を測定し, **Fig. 6** に示す吸着等温線を報告

Fig. 6 The adsorption isotherm for ¹⁴C-CTAB adsorbed to the O/W interface at 22°C. The continuous line represents the experimental isotherm and the broken line represents the isotherm calculated from Eq. (40) putting $\nu = 2$.

した²⁷⁾。¹⁴C- β 線の水中の飛跡が前述のように吸着量測 定の目的には大き過ぎるため、溶液内部からの放射能は 相対吸着量の放射能に較べてはるかに大きくなる。した がって、例えば $5 \times 10^{-5} \text{ mol}/l$ 以上の濃度では、実測値 は測定誤差が大きくなり、信頼性も低下し、Gibbs 吸着 量と比較することも無意味になる。

最近, Fig. 2-B の装置を用いて, 水ートルエン界面に おける³H 標識 sodium tetradecylsulfate (³HTNa) の 吸着量の測定が報告された¹³⁾。 Fig. 7 は測定された等 温線(〇印)である。³Hを標識核種とすることは Fig. 6 と比較して明らかなように, 精度のよい測定が可能であ る。 Fig. 8 は水ートルエン相における sodium tetradecylsulfate (TNa) の $\gamma \sim \log C$ を示す。トルエン相に 放射能測定のために必要な発光剤が存在するときと存在 しないときとで, TNa の界面活性は影響を受けないこ

Fig. 8 The interfacial tension vs. concentration curves of TNa solutions at the O/W interface with (●) and without (○) scintillator agents in oil (30°C). Curve a: no salt; Curve b: 75 mmol dm⁻³ sodium chloride.

— 32 —

とがわかる。むしろ水溶液に無機電解質が存在する方が TNa の界面活性に大きく影響を与える。Fig. 8 の関係 と(40) 式とから相対吸着量を計算すると, Fig. 7 の 2 実線となる。相対吸着量の計算値と実測値とは $\nu=1$ お よび2 の場合ともよく一致することがわかる。したがっ て,定温,定圧で(40) 式は液液界面における相対吸着量 を与える式として使用されることが示された。

気液および液液界面における相対吸着量は³H 標識化 合物を使用すると, Fig.2の装置により精度よく測定す ることができる。従って界面エネルギーと物質量のこの ような測定は2次元状態の相互作用や反応などを研究す ることができるので,多くの分野への応用が考えられる。 不溶性単分子膜としてリン脂質を界面に展開し,一方, 液相から作用物質としてアミノ酸型両イオン性界面活性 剤を吸着させることにより,両基質問の相互作用を解明 することができるであろう²⁹⁾。

4.3 界面の厚さ r について

界面活性剤,水および油の3成分2相系の界面吸着式 (13)において,Gibbsの規約を $\tau=0$ および $\Gamma_1^{(G)}=0$ とすることにより(38)式を導いた。これに対して, Hansen は水相と油相とは互に独立相であるため,水相 に、 $\Gamma_1^{(G)}=0$ の分割界面を導入したのと同様に,油相に も水相と無関係に分割界面の導入を考えた³⁰⁾。そして, 境界領域で

$$\Gamma_1^{(H)} = 0 \tag{41}$$

となる基準界面を提案した。これを Hansen の規約と 言う。分割界面は **Fig. 9** に示すようになる。図中の τ は界面過剰の厚さと呼ばれるものである³⁰⁾。この結果, τ は0でなくなるので, Gibbs 吸着式は(38)式の代りに,

$$-d\gamma = s^{\sigma(H)}dT - \tau dp + \Gamma s^{(H)}d\mu_3 \qquad (42)$$

となる。ここで上つき(H)は(41)式の規約を示す。そこで、(38)と(42)式のいずれを液液界面の吸着式として使用したらよいかが問題となる。

前節で $\tau=0$ として導いた (40) 式の計算値が実測値と 一致することを示した。一方, (38) 式の代りに, $\tau \Rightarrow 0$ の (42) 式を実験系に適用すると, T, P 一定で,

$$\Gamma_{3}^{(H)} = \frac{1}{\nu} \left(\frac{-\partial \gamma}{RT \partial \ln C_3} \right)_{T, P}$$
(43)

となる。(43)式は $\tau=0, \phi\approx0$ とした(40)式と同じ Gibbs 吸着式となる。このようにある実験条件の下では (38)と(42)式は同一の吸着式を与えるので、相対吸着量 の計算値は共に実測値と一致してしまい、界面モデルの 違いによる差は表われてこない。

しかし,界面熱力学の規約として導入された(41)式は 油水界面に界面厚 τ (Fig. 1-a における水と油の密度

Fig. 9 Ternary, two-phase system, with substance 3 surface active. (a) Concentration profile, $C_1(x)$, with $\Gamma_1=0$ surface at X=0. (b) Profile, $C_2(x)$, with $\Gamma_2=0$ surface at $X=\tau$. (c) Profile for surface-active component 3. τ is the distance between the $\Gamma_1=0$ and $\Gamma_2=0$ surface.

分布の変化する interphase 間の距離とは異る)の存在 を定義したことになる。近年,このての実験的確認や物 理的意味づけを明らかにしようとする試みが多くの研究 者によってなされている。

例えば,本村は単位面積当り

$$\left(\frac{\partial \gamma}{\partial p}\right)_{T, X_3} = v^{\sigma} \tag{44}$$

と考え、 τ は界面体積 (the volume of interface formation) v^{σ} になると考えている³¹⁾。実際に、水-hexane 界面で界面張力の圧力依存性が溶質 dodecanol の各濃 度について測定され、そして v^{σ} の値が求められた。本 村はさらに v^{σ} や膜密度などのデータから、吸着単分子 膜でも2次元の相転移現象を起すなど興味深い知見を報 告している³²⁾。また Lin らも吸着膜が存在する油水界 面で、 v^{σ} を求めるために界面張力の圧力依存性を測定 した。しかし、界面体積の存在を確認できるほど明確な 結果は得られなかったと報告している³³⁾。

最近, Good は本村らの(44)式の取り扱いに対して, Defey ら³⁴⁾ および Hansen³⁰⁾ が最初に示したように,

$$\left(\frac{\partial \gamma}{\partial p}\right)_{T, \ \mu_3{}^{\sigma} = \ \mu_3{}^{\rho}} = \tau \tag{45}$$

であり, τ をあくまで界面の厚さとして扱われるべきこ とを強調した³⁵⁾。そして, τ を(36)式の代りに

$$\tau = \frac{\Gamma \mathfrak{s}^{(H)}}{C \mathfrak{s}^{\beta} - C \mathfrak{s}^{\alpha}} \approx \frac{\Gamma \mathfrak{s}^{(H)}}{C \mathfrak{s}^{\beta}} \tag{46}$$

と定義した。すなわち、 τ は相対吸着の溶質が溶液内部 と同一密度で存在するとしたときの界面の厚さである。 その結果,界面過剰の体積を考えなくても, τ は吸着系で

— 33 —

— 33 —

は常に0でない値となることを示した。Good は でを (46)式のように考えることによって, 液液界面では本 質的に(42)式が用いられるべきことを示した。最近, Gershfeld と Tajima は ³H 標識レシチンを用いて, 空気一水界面でレシチンの液晶転移点直後の狭い温度範 囲で,単分子膜以上の吸着膜を形成することを報告して いる³⁶⁾。この事実は Gibbs の規約(37)式では説明する ことができないので, (41)と(46)式を導入することが必 要であると指摘された³⁵⁾。

界面の境界領域における"厳密な"熱力学的取り扱い から molecular dimension のパラメーター τ が導入さ れるということはきわめて興味深いことである。もしも τ の値が熱運動なども考慮に入れて,さらに詳細に調べ られるならば,吸着状態の分子についてより多くの情報 が得られるようになるかも知れない。

5. おわりに

気体および液液界面での溶質の吸着は溶媒との相対吸 着によって表わされることを示した。界面熱力学によっ て導入される Gibbs 吸着式は ³H 標識化合物を用いて 測定された吸着等温線をよく説明することが最近の報告 から明らかとなった。固体表面の多種におよぶ研究法に 較べ,液体の表面組成の研究法が不十分な現状では、こ の熱力学的研究法は大きな意義をもち,重要である。し かし、2成分2相系の界面において理論的に導入される 境界領域の厚さ ε の物理的解釈はまだ未解決であり、今 後の課題である。界面での吸着機構や吸着状態を知る上 でも、 τ についての解明は必要であり、今後の多くの理 論および実験による研究が要望されるところである。

文 献

- R. Defay, I. Prigogine, A. Bellemans and D. H. Everett: Surface Tension and Adsorption, Longmans, Green (1966).
- 2) 本村欣士: 表面 15 (1977) 649.
- 池田勝一:表面 15 (1977) 592.
 熱・温度測定と熱分析 1981.(日本熱測定学会編). (1982).科学技術社,東京。
- J. O. Hirschfelder, C. F. Curtiss and R. B. Bird : Molecular Theory of Gases and Liquids, John Wiley and Sons, New York (1967), p. 339.
- M. Koshinuma and T. Sasaki : Bull. Chem. Soc. Jpn. 48, (1975) 2755.
- M.G. Donnan and J.T. Barker: Proc. Roy. Soc. (London) A85 (1911) 557.
- J. W. McBain and L. A. Wood: *ibid*. A174 (1940) 286.
- T. Smith: Adv. Colloid Interf. Sci. 3 (1972) 161.

- B. A. Pethica and J. Few: Disc. Faraday Soc. 18 (1954) 258.
- G. Nilsson: J. Phys. Chem. 61 (1957) 1135; R. Matuura, H. Kimizuka, S. Miyamoto and R. Shimozawa: Bull. Chem. Soc. Jpn. 31 (1958) 532.
- M. Muramatsu, K. Tajima and T. Sasaki : Bull. Chem. Soc. Jpn. 41 (1968) 1279 and 3036.
- 12) K. Tajima, M. Muramatsu and T. Sasaki : *ibid*.43 (1970) 1991.
- K. Tajima, H. Murata and T. Tsutsui: J. Colloid Interf. Sci. 85 (1982) 534.
- M. Muramatsu and K. Tajima: J. Labelled Compds. 2 (1966) 304.
- 15) M. Iwahashi and K. Tajima; ibid. 7 (1971) 501.
- T. Okumura, A. Nakamura, K. Tajima and T. Sasaki : Bull. Chem. Soc. Jpn. 47 (1974) 2986.
- 17) K. Tajima, M. Iwahashi and T. Sasaki: *ibid*.
 44 (1971) 3251.
- J. T. Davies: Trans. Faraday Soc. 48 (1952)
 1052; H. L. Rosano and G. Karg: J. Phys. Chem. 63 (1959) 1692; A. M. Mankowich: J. Amer. Oil Chemists' Soc. 43 (1966) 615.
- 田嶋和夫:界面活性剤の分析と試験法。(北原文 雄他編)(1982). 頁 13.
- 20) K. Tajima: Bull. Chem. Soc. Jpn. 44 (1971) 1767.
- 21) S. Ozeki, M. Tsunada and S. Ikeda : J. Colloid Interf. Sci. 64 (1978) 28.
- 22) J. W. Gibbs: Scientific Papers (eds. H. W. Bumstead and R.G. Van Name) vol. 1 (1961), Dover, New York.
- 23) E.G. Cockbain: Trans. Faraday Soc: 50 (1954) 874.
- 24) D. C. Thomas and S. D. Christian: J. Colloid Interf. Sci. 78 (1980) 466.
- 25) G. T. Ayoub and N. M. Bashara : J. Opt. Soc. Amer. 68 (1978) 978.
- 26) D. A. Haydon and J. N. Phillips: Trans. Faraday Soc. 54 (1958) 698.
- 27) D.E. Graham, L. Chatergoon and M.C. Phillips: J. Phys. E. Scientific Instr. 8 (1975) 696.
- 28) T. Takenaka: Adv. Colloid Interf. Sci. 11 (1979) 291.
- 29) K. Tajima and T. Tsutsui: Bull. Cem. Soc. Jpn. 54 (1981) 109 and 114, K. Tajima: to be published.
- 30) R.S. Hansen: J. Phys. Chem. 66 (1962) 410.
- K. Motomura: J. Colloid Interf. Sci. 64 (1978) 348 and 356.
- 32) K. Motomura: Adv. Colloid Interf. Sci. 12 (1980) 1.
- 33) M. Lin, J. Firpo, P. Mansoura and J.F. Baret : J. Chem. Phys. 71 (1979) 2202.
- 34) Ref. 1, p. 89.
- 35) R. Good: J. Colloid Interf. Sci. 85 (1982) 128 and 141.
- 36) N.L. Gershfeld and K. Tajima: Nature (London). 279 (1979) 708.