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1 INTRODUCTION

Molecular-dynamics (MD) simulations have been widely
used in many different fields, which range from physi-
cal chemistry to solid-state physics, to study the micro-
scopic behavior of temperature- and time-dependent phe-
nomena[1]. A great deal of work has been carried out using
classical potentials to account for the interactions between
atoms. The main drawback of these interaction potentials
is that they are usually derived semiempirically from par-
ticular bonding situations, and can fail to give an appropri-
ate description when the chemical environment is changed.
Because of this transferability problem, it is sometimes de-
sirable to have a MD scheme in which the variations of the
electronic structure are accounted for during the simulation.
In an important paper, Car and Parrinello[2] proposed a
method to perform molecular dynamics in which the elec-
tronic structure is described in the density-functional local-
density approximation (LDA).[3,4] In this scheme, the ionic
forces are determined directly from the electronic structure
of the system independently of any empirical parameter,
and are therefore highly accurate over a wide range of bond-
ing situations. The Car-Parrinello (CP) method has been
successfully applied to a large variety of systems provid-
ing detailed information on electronic as well as structural
properties.

In spite of the generality of the underlying idea, the Car-
Parrinello method has primarily been applied in its origi-
nal version, i.e., using plane-wave basis sets with periodic
boundary conditions in conjunction with pseudopotentials
(PP’s). There are many advantages of such a basis set. The
mathematical formulation is particularly simple. The basis
set is independent of the ionic positions, giving an unbiased
uniform description of the simulation cell and preventing
undesirable Pulay terms[5] from appearing in the calcula-
tion of the ionic forces. Plane waves easily allow the use of
fast Fourier transforms (FFT’S) to transfer quantities from
real space to Fourier space and vice versa. Another advan-
tage is the possibility of testing the accuracy of the results
by increasing the energy cutoff, which defines the highest
kinetic energy of the plane waves in the basis set.

The treatment of the electronic structure causes a con-
siderable increase in the computational effort, such that the
size of the system which can be afforded is generally much
smaller than for classical simulations. The number of plane
waves depends on the size of the system and on the energy
cutoff required for a sulficiently accurate description of the
electronic structure. This energy cutoff is a property of the
PP, and can sometimes affect the feasibility of a CP simu-
lation.

In the original CP version norm-conserving PP’s (Refs.
6 and 7) have been used in their fully separable form[8].
In such a PP scheme, the pseudo-wave-function matches
the all-electron wave function beyond a cutoff radius which
defines the core region. Within the core region, the pseudo-
wave-function has no nodes and is related to the all-electron
wave function by the norm- conserving condition which en-
sures that both wave func- tions carry the same charge. In
the spirit of reduc- ing the energy cutoff, several improve-
ments have been proposed.[9-12] However, despite these im-
provements, the energy cutoff needed to describe the local-
ized valence orbitals of frst-row elements or transitions met-
als is still frequently too high to allow MD simulations of
extended systems.

Recently, Vanderbilt has proposed a new PP scheme in
which the norm-conserving condition has been relaxed[13].
In this scheme, the pseudo-wave-functions are allowed to
be as soft as possible within the core region, yield- ing
a dramatic reduction of the cutoff energy required to de-
scribe them. Technically, this is accomplished by introduc-
ing a generalized orthonormality condition, which modifies
the conventional approach significantly In order to recover
the full electronic charge, the electron density given by the
squared moduli of the wave functions is augmented in the
core regions. Thus, the electron density can be subdivided
in a smooth part extending throughout the unit cell, and
a hard part localized in the core regions. Note that the
augmented part appears only in the electron density; this
distinguishes the current scheme from others, such as the
linearized augmented plane wave (LAPW), in which similar
ideas have been applied to the wave functions.

In this paper we address the consequences of the gen-
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eralized orthonormality condition in the context of
Car-Parrinello simulations. The calculations are affected
in several ways. First, a new term appears in the
Kohn- Sham equations which is dependent on the
wave functions and must thus be updated at ev-
ery time step. Second, the orthonormality condi-
tion depends upon the ionic positions. As a conse-
quence, the manner in which this condition is im-
posed during the ionic motion and the expressions
for the ionic forces are substantiahy modified with
respect to the norm-conserving case. Finally, the
hard contribution to the electron density must be
accounted for without losing the advantage of the
low cutoff energy required for the wave functions.
In some cases this problem can be ameliorated by
a careful generation of a pseudodensity to represent
the hard contribution. Otherwise it can be solved
using a real-space approach which takes advantage
of the fact that the augmented parts of the electron
density are localized. We will show that, in spite of
the more complex formulation, the present scheme
is well suited to handle extended systems containing
first-row elements or transition metals.

The paper is organized as follows. In Sec. II we re-
call the general properties of the Vanderbilt ultrasoft PP
scheme. In Sec. III we implement the PP in a Car- Par-
rinello molecular-dynamics scheme, addressing various con-
sequences of the generalized orthonormality condition. Sec-
tion IV explains how the implementation is divided between
real and reciprocal space. We give a brief summary in Sec.
V of various applications that the method already has al-
lowed, and conclude in Sec. VI with a discussion of per-
spectives and future directions. The Appendix contains an
alternative derivation of the constraint contribution to the
ionic forces. Although the method has never been described
in full, various accounts of specific applications have been
presented elsewhere. [14-16]

2 VANDERBILT’S ULTRA-
SOFT PSEUDOPOTENTIAL
SCHEME

2.1 Kohn Sham equations

In Vanderbilt’s ultrasoft PP scheme,[13] the total energy of
Nv valence electrons, described by the wave functions φi, is
given by

Etot[{φi}, {Ri}] =
∑

i

〈φi| − ∇2 + VNL|φi〉

+
1
2

∫ ∫
drdr′

n(r)n(r′)
|r− r′|

+Exc[n] +
∫

drV ion
loc (r)n(r)

+U({RI}) (1)

where n(r)is the electron density, Exc is the exchange
and correlation energy, and U({RI}) is the ion-ion inter-
action energy. The PP contains a local part V ion

loc (r) =∑
I V ion

loc (|r−RI |) (Ref. 17) and a fully nonlocal part given

by
VNL =

∑
nm,I

D(0)
nm|βI

n〉〈βI
m| (2)

where the functions βI
n as well as the coeflicients D

(0)
nm char-

acterize the PP and differ for different atomic species. In
the following we will for simplicity consider only one atomic
species . The βI

n functions are centered on site I, and thus
depend on the ionic positions through

βI
n(r) = βn(r− RI) (3)

Here βn is an angular momentum eigenfunction in the angu-
lar variables, times a radial function which vanishes outside
the core region; the indices n and m in Eq. (2) run over
the total number Nβ of such functions. In the ultrasoft PP
case, often two reference energies, and therfore two radial
functions, are required for each included angular momen-
tum channel. This leads to a number Nβ which is generally
twice as large as for a corresponding Kleinman-Bylander[8]
norm-conserving PP.

The electron density in Eq. (1) is given by

n(r) =
∑

i

|φi(r)|2 +
∑
nm,I

QI
nm(r)〈φi|βI

n〉〈βI
m|φi〉

 (4)

where the augmentation functions QI
nm(r) = Qnm(r−

RI) are also provided by the PP and are strictly
localized in the core regions. Thus, while the electron
density in Eq. (4) is still quadratic in the wave functions, it
is now separated into a soft delocalized contribution given
by the squared moduli of the wave functions, and a new
hard contribution localized at the cores. The ultrasoft PP
is fully determined by the quantities V ion

loc (r), D(0)
nm, Qnm(r),

and βn(r). The algorithm used to generate these quantities
is described in Ref. 13 and is briefly reviewed in Sec. II B.

The relaxation of the norm-conserving condition is
achieved by introducing a generalized orthonormality con-
dition

〈φi|S({RI})|φj〉 = δij (5)

where S is a Hermitian overlap operator given by

S = 1 +
∑
nm,I

qnm|βI
n〉〈βI

m| (6)

where qnm =
∫

drQnm(r). The orthonormality condi-
tion (5) is consistent with the conservation of the charge∫

drn(r) = Nv. Note that the overlap operator S is depen-
dent on the ionic positions through the |βI

n〉, eq(3).
The ground-state orbitals φi are those which minimize

the total energy (1) under condition (5), 1

δEtot

δφ∗
i (r)

= ϵiSφi(r) (7)

where ϵi have been introduced as Lagrange multipliers. Be-
cause of the fact that the augmentation part of the charge

1

δ(Etot − ϵi〈φi|S({RI})|φj〉)
δφ∗

i (r)
= 0
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density depends on the wave functions,

δn(r′)
δφ∗

i (r)
= φi(r′)δ(r′ − r) +

∑
nm,I

QI
nm(r′)βI

n(r)〈βI
m|φi〉 (8)

additional terms appear in the Kohn-Sham equations from
the density-dependent terms in the total energy (1). As an
example, we consider the exchange and correlation energy.
Using Eq.(8) we obtain

δExc[n]
δφ∗

i (r)
=

∫
dr′

δExc[n]
δn(r′)

δn(r′)
δφ∗

i (r)
= µxc(r)φi(r)

+
∑
nm,I

βI
n(r)〈βI

m|φi〉
∫

dr′µxc(r′)QI
nm(r′)

(9)

where µxc(r) = δExc/δn(r). The other terms can be calcu-
lated similarly. We obtain

H|φi〉 = ϵiS|φi〉 (10)

where
H = −∇2 + Veff +

∑
nm,I

DI
nm|βI

n〉〈βI
m| (11)

Here Veff is the screened effective local potential,

Veff =
δEtot

δn(r)
= Vloc(r) +

∫
dr′

n(r′)
|r− r′|

+ µxc(r) (12)

2 All the terms arising from the augnented part of the elec-
tron density have been grouped together with the nonlocal

2

Etot =
∑

i

〈φi| − ∇2 + VNL|φi〉

+
1

2

∫ ∫
dr′dr′′

n(r′)n(r′′)

|r′ − r′′|

+Exc[n] +

∫
drV ion

loc (r)n(r) + U({RI})

δEtot

δφ∗
i (r)

= (−∇2 + VNL)|φi〉

+
1

2

∫ ∫
dr′dr′′

δn(r′)

δφ∗
i (r)

n(r′′)

|r′ − r′′|

+
1

2

∫ ∫
dr′dr′′

n(r′)

|r′ − r′′|
δn(r′′)

δφ∗
i (r)

+
δExc[n]

δφ∗
i (r)

+

∫
dr′V ion

loc (r′)
δn(r′)

δφ∗
i (r)

= (−∇2 + VNL)|φi〉

+
1

2

∫
dr′′

n(r′′)

|r − r′′|
φi(r) +

1

2

∫
dr′

n(r′)

|r′ − r|
φi(r)

+
1

2

∫ ∫
dr′dr′′

n(r′′)

|r′ − r′′|

∑
nm,I

QI
nm(r′)βI

n(r)〈βI
m|φi〉

+
1

2

∫ ∫
dr′dr′′

n(r′)

|r′ − r′′|

∑
nm,I

QI
nm(r′′)βI

n(r)〈βI
m|φi〉

+ µxc(r)φi(r) +
∑
nm,I

βI
n(r)〈βI

m|φi〉
∫

dr′µxc(r
′)QI

nm(r′)

+ V ion
loc (r)φi(r) +

∫
dr′V ion

loc (r′)
∑
nm,I

QI
nm(r′)βI

n(r)〈βI
m|φi〉

part of the PP, Eq.(2), by defining new coefficients

DI
nm = D(0)

nm +
∫

drVeff(r)QI
nm(r) (13)

Note, however, that the D
(0)
nm are just parameters which

characterize the PP, whereas the new DI
nm depend on the

wave functions through Veff , Eq.(12), and have to be up-
dated in the self-consistency procedure. (The treatment
given here of the screening of the D matrices is consis- tent
with that of Ref. 14, but differs from, and should be con-
sidered to supersede,[18] that of Ref. 13.)

At this stage, the difference with respect to the norm-
conserving case resides in the presence of the S operator,
the wave-function dependence of the Dnm and the fact that
the number N of β functions is twice as large. The calcula-
tion of the DI

nm, Eq. (13), can be carried out in real space
and produces only a modest overhead (see Sec. IV B). The
presence of the S operator requires the calculation of the
〈βI

n|φi〉, which, however, are also needed for the nonlocal
PP, and thus do not require any additional computation.

The number of operations needed to calculate one scalar
product of this type scales like the number of plane waves
Npw, and the number of these scalar products is given by
NatNβNband where Nrmat is the number of atoms, Nβ is the
number of βn functions per atom, and Nband is the number
of filled states. Since Npw and Nband both scale like Nat,
this part scales like N3

at and for large systems it is typic-
ahy the most time consuming part. (When also the ionic
forces [see Eq. (43)] are calculated, similar scalar products
〈dβI

n/dRI |φi〉 are required, just as in conventional norm-
conserving schemes.) Thus , for large systems in which
the computational cost related to these scalar products is
dominant, one can deduce that the ultrasoft PP scheme
becomes advantageous com- pared to the norm-conserving
(NC) scheme when NNC

pw > 2Npw, where we have taken
Nβ = 2NNC

β . In terms of energy cutoff Ewf
c , the criterion

is Ewf,NC
c > 1.6Ewf

c , which is easily satisfied for first-row
elements and transition metals.

Very recently King-Smith, Payne, and Lin[23] have shown
that it is possible to evaluate the scalar products between
the wave functions and the βl

n functions in real space by tak-
ing advantage of the fact that the βI

n are localized. In this
way, this part of the calculation scales like NatNband, i.e.,
Iike N2

t . Although in principle the full calculation would
still scale like N3

at because of the orthonormalization proce-

= (−∇2 + VNL + VH(r) + µxc(r) + V ion
loc (r))|φi〉

+

∫
dr′(VH(r′) + µxc(r

′) + V ion
loc (r′))∑

nm,I

QI
nm(r′)βI

n(r)〈βI
m|φi〉

VH(r) =

∫
dr

n(r)

|r − r′|
δEtot

δφ∗
i (r)

= (−∇2 + Veff)|φi〉

+
∑
nm,I

(
D

(0)
nm +

∫
dr′Veff (r′)QI

nm(r′)

)
|βI

n〉〈βI
m|φi〉
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dure, the cost of a previously dominant part of the compu-
tation would be considerably reduced, allowing the study of
still larger systems .

2.2 Pseudopotential generation algorithm

In this section we give a concise description of the specific
PP generation algorithITL introduced in Ref. 13.

As in other PP methods, an all-electron (AE) calcula-
tion is first carried out on a free atom in some reference
configuration, Ieading to a screened potential VAE(r). Then
for each angular momentum l , a set of reference en- ergies
ϵlτ is chosen (τ = 1, Nτ ,, typically 1 ≤ Nτ ≤ 3 ) to cover
the energy range over which good scattering properties are
desired (usually the range of occupied bulk valence states).
At each ϵlτ the solution of the Schrödinger equation which
is regular at the origin is obtained (for fixed VAE),

[T + VAE(r)]ψn(r) = ϵnψn(r) (14)

Here n is a composite index, n = Imτ , and T is the kinetic-
energy operator (−1/2)∇2. (The amplitude of ψn is as-
sumed to have been fixed in some definite way, e.g., by its
value at an arbitrary radius R.) Despite the fact that ψn is
in general non-normalizable, a bra-ket notation

(T + VAE − ϵn)|ψn〉 = 0 (15)

is adopted as a stand-in for the previous equation. Quanti-
ties such as 〈ψn|ψn〉 are ill-defined, but the special notation
〈ψn|ψm〉R will be used to denote the integral ofψ∗

n(r)ψm(r)
inside the sphere of radius R.

Next, cutoff radii rcl are chosen, and for each ψn obtained
above, a pseudo wavefunction φn is constructed, subject
only to the constraint that it join smoothly to ψn at rcl.
No norm-conservation constraint is explicitly imposed. A
smooth local potential Vloc(r) is also generated in such a
way that it matches smoothly to VAE(r) at a cutoff radius
rloc
c , and a diagnostic radius R is chosen such that R is

slightly larger than the maximum of the rcl and rloc
c . (R

must be outside the rc’s in order that scattering properties
calculated there will be meaningful.) Then the orbitals

|χn〉 = (ϵn − T − Vloc)|φn〉 (16)

are formed. These are local (they vanish at and beyond R,
where Vloc = VAE and φn = ψn). 3

Thus the matrix of inner products

Bnm = 〈φn|χm〉 (17)

is well defined.
We now form the quantities V ion

loc , D
(0)
nm, Qnm(r), and

βn(r) needed to specify the PP. Qnm(r), and βn(r) are given
by

Qnm(r) = ψ∗
n(r)ψm(r) − φ∗

n(r)φm(r) (18)

and
|βn〉 =

∑
m

(
B−1

)
mn

|χm〉 (19)

3

VNL|φi〉 = |χi〉 = (ϵi − T − Vloc)|φi〉

then φi is an eigenvector of T + Vloc + VNL. Then it is shown that
the fully nonlocal KB-type PP can be obtained directly from VNL =
|χi〉〈χi|/〈χi|φi〉.

which are dual to the |φn〉 and are also local; they form the
’projectors’ of the nonlocal operators. 4 It follows from Eq.
(6) that

qnm = 〈ψn|ψm〉R − 〈φn|φm〉R (20)

5 It is straightforward to verify that the |φn〉 obey the sec-
ular equation(

T + Vloc +
∑
nm

Dnm|βn〉〈βm|

)
|φn〉 =

ϵn

(
1 +

∑
nm

qnm|βn〉〈βm|

)
|φn〉 (21)

where
Dnm = Bnm + ϵmqnm (22)

6 Finally the quantities V ion
loc and D

(0)
nm are obtained from a

”descreening” procedure,

V ion
loc = Vloc(r) − VH(r) − µxc(r) (23)

D(0)
nm = Dnm −

∫
dr′Vloc(r′)Qnm(r′) (24)

7

This PP has been generated in such a way that the follow-
ing features are reproduced in the reference con-figuration.

4From the definition of |βi〉∑
i

Bik|βi〉 =
∑
i,j

(
B−1

)
ji

Bik|χj〉

=
∑

j

δjk|χj〉 = |χk〉

|χj〉 =
∑

i

〈φi|χj〉︸ ︷︷ ︸
Bij

|βi〉

〈φk|χj〉 =
∑

i

〈φi|χj〉〈φk|βi〉

then 〈φk|βi〉 = δki

5qnm =
∫

drQnm and Qnm are localized in the core region.
6

VNL|φi〉 =
∑
kl

(Bkl + ϵlqkl)|βk〉 〈βl|φi〉︸ ︷︷ ︸
δli

=
∑

k

Bki|βk〉︸ ︷︷ ︸∑
kn

BkiB−1
kn

|χn〉=|χi〉

+
∑
kl

ϵlqkl|βk〉〈βl|φi〉

= |χi〉 + ϵi︸︷︷︸
δli

∑
kl

qkl|βk〉〈βl|φi〉

= (ϵi − T − Vloc)|φi〉 + ϵi

∑
kl

qkl|βk〉〈βl|φi〉

=

[
ϵi(1 +

∑
kl

qkl|βk〉〈βl|) − T − Vloc

]
|φi〉

= (ϵiS − T − Vloc)|φi〉

7n(r′) in the paper may be replaced by Qnm(r′)
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(Here we assume that the eigenvalues of the occupied va-
lence orbitals in the reference configuration are included
among the chosen ϵτl; this is our standard practice.) (i)
The pseudoeigenvalues are equal to the AE ones, and the
corresponding orbitals agree exactly out-side rcl. (ii) The
scattering properties are correct at each ϵτl in the sense that
the logarithnric derivative and its en-ergy derivative match
the AE one at that energy[13]. Thus, the transferability, as
measured by scattering properties in the reference config-
uration, can be systematically im-proved by increasing the
number of such energies. (iii) The valence charge density is
precisely equal to the AE valence density in the reference
configuration (except in-sofar as it is affected by replace-
ment of the Qnm by pseudo densities as discussed in Sec. II
C). This helps improve the transferability with respect to
changes in the screen-ing environment.

We illustrate the result of such a procedure for the case
of the 3d orbital of Cu. In Fig. 1 the all-electron wave func-
tion and the pseudo-wave-function obtained with a cutoff
radius of rcd = 2.0 a.u. are compared. The main advantage
of the present scheme over previous ones is that no norm-
conservation constraint is imposed during the construction
ψn → φn of the pseudowavefunction. Thus, the construc-
tion can be done in such a way as to make the ψn(r) as
smooth as possible. This is the reason we refer to this
scheme as an ”ultrasoft” PP scheme.

FIG, 1. All-electron (solid) and pseudo (dashed) radial
wave functions of the 3d orbital of Cu. A cutoff radius of 2
a.u. has been used.

2.3 Construction of the pseudoelectron
charge density

In norm-conserving PP schemes the electron density is de-
fined as in Eq. (4) where only the first term is kept on the
right-hand side. Thus, the energy cutoff Edens

c re-quired to
describe fully the electron density is four times the energy
cutoff Ewf

c of the wave functions

Edens
c = 4Ewf

c (25)

This direct relationship between the cutoff for electron den-
sity and wave functions does not hold in the ultrasoft PP
scheme because of the presence of the augmentation func-
tions Qnm in the electron density (4). In this scheme, it
is therefore appropriate to introduce two independent en-
ergy cutoffs: one for the soft part of the electron den-sity,
Esoft

c = 4Ewf
c , and a second and generally much higher

one Edens
c to describe the augmentation functions Qnm.

It is often possible to reduce the charge cutoff Edens
c by

replacing the functions Qnm by pseudocounterparts [13,16].
In this construction, the Qnm are modified within an in-
ner core region (defined by rin). The charge density de-
scribed by the pseudo Qnm preserves all the charge mo-
ments, so that the electrostatic potential beyond rin remains
unchanged. This is achieved by decomposing the Qnm ac-
cording to angular momentum L as

Qnm(r) =
∑
LM

cnm
LMYLM (r̂)Qrad

nm(r) (26)

where cnm
LM are Clebsch-Gordan coefiicients, YLM (r̂) are

spherical harmonics, and Qrad
nm(r) gives the all-electron ra-

dial dependence of Qnm and is independent of L and M

by construction[13]. The number of possible L channels in
Eq. (26) is flnite because of the fact that a nonlocal PP is
required only for the lowest angular momentum channels.

The Qrad
nm in Eq. (26) are then replaced by L-dependent

counterparts QL
nm,

Qnm(r) =
∑
LM

cnm
LMYLM (r̂)QL

nm(r) (27)

which satisfy the condition that for each L-component the
Lth moment of the electron charge density be conserved,∫ rL

in

0

r2drrLQL
nm(r) =

∫ rL
in

0

r2drrLQrad
nm(r) (28)

where L-dependent inner cutoff radii rL
in have been intro-

duced. Since the high Fourier components of Qnm are
mainly related to the high-L components, it is convenient,
for a given cutoff Edens

c , to use smaller rL
in for low-L com-

ponents. In this way, a relatively better description of the
lowest moments of the electron charge density is maintained.
In Fig. 2 we show the pseudo QL

nm for L = 0, L = 2, and
L = 4 obtained from Qrad

nm for the case in which n and m
correspond to the same reference energy in the d channel for
Cu (corresponding to the wave functions in Fig. 1). The
core cutoff radius in this case is 2 a.u., whereas the inner
cutoff radii rL

in range from 0.6 a.u. (L = 0) to 1.2 a.u.
(L = 4). With this choice of rL

in it is possible to give a good
description of all the QL

nm using an energy cutoff of about
200 Ry, as can be inferred from Fig. 3 where we show the
Fourier transforms of the functions obtained in Fig. 2.

In order to construct optimal pseudo QL(r) (where we
have dropped the indices n and m), we expand them in
polynomials of r inside rL

in as

QL(r) = rLρL(r), r < rL
in (29)

where
ρL(r) = C1 + C2r

2 + C3r
4 + ... (30)

with the number of terms ensuring sufficient smoothness
of the polynomial. We want QL(r), i.e., ρL(r) as smooth
as possible. Therefore, following lines similar to Rappe et
al.,[11] we insist that the Fourier coefficients above a certain
cutoff wave vector Gc should be as small as possible. Thus,
we minimize

I =
∫ ∞

Gc

G2Q2
L(G)dG (31)

FIG. 2. L-dependent Q rad (r) for the case of the 3d
orbital of Cu. The original Q rad is given by the solid curve.
The pseudo QL for L = 0, 2, 4 have been obtained with inner
cutoff radii rinL of 0.6, 0.8, and 1.2 a.u., respectively.

FIG. 3. Fourier transforms of the QL given in Fig. 2.
where

QL(G) =
∫ ∞

0

drr2QL(r)jL(Gr) (32)

and jL is the spherical Bessel function of order L. The
minimization should be done subject to the constraint (27)
and subject to the following continuity requirements:

ρ(rL
in) = ρAE(rL

in)
ρ′(rL

in) = ρ′AE(rL
in) (33)

ρ′′(rL
in) = ρ′′AE(rL

in)

5



where the primes indicate radial derivatives. This treat-
ment gives us a very smooth charge density with smooth
and continuous first and second derivatives, features which
are especially important in the context of gradient-corrected
LDA schemes[19,20] In Fig. 4 we demonstrate the success
of this approach for the case of oxygen, specifi-cally for QL

nm

with L = 0 and n, m = 2p. Figure 4 shows how the Fourier
coefficients of the pseudo QL

nm behave as a function of G
when optimally generated according to the above scheme, in
comparison to the original QL

nm and pseudo QL
nm generated

in a fourth-order polynomial just to give the correct charge
and dipole moment and the continuous first derivative of
the charge. It is clear that the reciprocal-space convergence
is much improved using the present approach.

We have found that in many cases, including that of oxy-
gen, replacement of the Qnm by pseudodensities using the
above two refinements (use of L-dependent rin and/or opti-
mally soft construction of the QL) allows us to obtain an ex-
cellent description of the charge density with Edens

c = Esoft
c .

In these cases, condition (25) is restored, and the solution
of the Kohn-Sham equations (10) can be obtained in the
usual way by fast Fourier transforming between a single
pair of real-space and reciprocal-space meshes, just as is
done with conventional norm-conserving PP’s. However, in
some cases, and in particular for transition metals such as
Cu, even the pseudo Qnm require Edens

c > 4Ecwf . In these
cases, the problem of having a large number of plane waves
can still be circumvented using the fact that the Qnm are
localized in real space. The details of our method for ac-
complishing this will be discussed later in Sec. IV.

FIG. 4. Fourier components of optimal pseudo (solid) ,
for nonoptimal pseudo (dashed), and original (dotted) QL

nm

oxygen with L = 0 and n, m = 2p. Vertical scale is arbitrary.

3 MOLECULAR DYNAMICS

3.1 Lagrangian formulation and ionic
forces

Following the CP approach[2], the electronic wave functions
and the ionic coordinates evolve according to a classical La-
grangian

L = µ
∑

i

∫
dr|φ̇i|2 +

1
2

∑
I

MIṘ2
I

−Etot({φi,RI}) (34)

subject to a set of constraints

Nij({φi,RI}) = 〈φi|S|φj〉 − δij = 0 (35)

Here µ is a fictitious mass parameter for the electronic de-
grees of freedom, MI is the mass of the atoms, and Etot

and S are as given in Eqs. (1) and (6), respectively. The
orthonormality constraints (35) are holonomic, and do not
cause energy dissipation during the MD run. They may be
incorporated by introducing Lagrange multipliers Λij into

the Euler equations of motion, 8

µφ̈i = −δEtot

δφ∗
i

+
∑

j

ΛijSφj (36)

FI = MIR̈I = −∂Etot

∂RI
+∑

ij

Λij〈φi|
∂S

∂RI
|φj〉 (37)

During a MD run, the Lagrange multipliers are to be deter-
mined dynamically using the method of Ryckaert et al.,[21]
as discussed in Sec. III B. For the special case of equilib-
rium, the vanishing of Eq. (36) reduces (with Λij = ϵiδij)to
the electronic Kohn-Sham equations (7) or (10), and the
vanishing of Eq. (37) corresponds to the vanishing of the
ionic forces FI . An alternative deriva-tion of the force ex-
pression in Eq. (37), particularly applicable to direct mini-
mization approaches, is given in the Appendix.

We now derive explicit expressions for the two terms on
the right-hand side of Eq. (37) , which correspond to the
contributions from the change in the Hamiltonian and from
the change in the orthonormality constraints, respectively
The latter contribution appears because of the Rl depen-
dence of the overlap operator S; note that it is absent in
the case of norm-conserving schemes, in which the orthonor-
mality condition does not depend in any way on the ionic
positions. The first term on the right-hand side of Eq. (37)
must be obtained keeping in mind that the electron density
also depends on RI through the QL

nm and βl
n. Introducing

the quantities

ρI
nm =

∑
i

〈φi|βI
n〉〈βI

m|φi〉 (38)

ωI
nm =

∑
ij

Λij〈φj |βI
n〉〈βI

m|φi〉 (39)

with derivatives

∂ρI
nm

∂RI
=

∑
i

[
〈φi|

∂βI
n

∂RI
〉〈βI

m|φi〉

+〈φi|βI
n〉〈

∂βI
m

∂RI
|φi〉

]
(40)

∂ωI
nm

∂RI
=

∑
i

Λij

[
〈φj |

∂βI
n

∂RI
〉〈βI

m|φi〉

+〈φj |βI
n〉〈

∂βI
m

∂RI
|φi〉

]
(41)

and noting that

∂n(r)
∂RI

=
∑
nm

[
QI

nm(r)
∂ρI

nm

∂RI
+

dQI
nm(r)
dRI

ρI
nm

]
(42)

we arrive at the expression

FI = − dU

dRI
−

∫
dr

dV ion
loc

dRI
n(r)

8

d

dt

(
∂L

∂q̇i

)
−

∂L

∂qi
=

K∑
k

λk
∂gk

∂qi

6



−
∫

drVeff(r)
∑
nm

dQI
nm(r)
dRI

ρI
nm

−
∑
nm

DI
nm

∂ρI
nm

∂RI
+

∑
nm

qnm
∂ωI

nm

∂RI
(43)

where DI
nm and Veff have been defined in Eqs. (13) and

(12), respectively. 9 The last term of Eq. (43) corresponds
to the constraint contribution [last term of Eq. (37)]. 10

Note that because the basis set consists of plane waves, the
wave functions do not depend on the ionic positions and no
additional Pulay-type corrections are needed.[5]

3.2 Evolution of orthonormality con-
straints

Here we discuss in some detail the discretization of the equa-
tions of motion (36) and (37) using the Verlet algorithm, 11

9

Etot =
∑

i

〈φi| − ∇2 + VNL|φi〉 +
1

2

∫ ∫
drdr′

n(r)n(r′)

|r − r′|

+Exc[n] +

∫
drV ion

loc (r)n(r) + U({RI})

−
∂Etot

∂RI
= −

∑
i

〈φi|
∂

∂RI

∑
nmI′

D
(0)
nm|βI′

n 〉〈βI′
m |φi〉

−
1

2

∫ ∫
drdr′

∂n(r)

∂RI

n(r′)

|r − r′|

−
1

2

∫ ∫
drdr′

∂n(r′)

∂RI

n(r)

|r − r′|

−
dExc

dn

∂n(r)

∂RI
−

∫
dr

∂V ion
loc (r)

∂RI
n(r)

−
∫

drV ion
loc (r)

∂n(r)

∂RI
−

∂U({RI})
∂RI

= −
∂U({RI})

∂RI
−

∫
dr

∂V ion
loc (r)

∂RI
n(r) −

∑
nm

D
(0)
nm

∂ρI
nm

∂RI

−
∫

dr [VH(r) + µxc + V ion
loc (r)]︸ ︷︷ ︸

=Veff (r)

×

∑
nm

[
QI

nm(r)
∂ρI

nm

∂RI
+

dQI
nm(r)

dRI
ρI

nm

]
= −

∂U({RI})
∂RI

−
∫

dr
∂V ion

loc (r)

∂RI
n(r)

−
∫

drVeff (r)
∑
nm

dQI
nm(r)

dRI
ρI

nm

−
∑
nm

∂ρI
nm

∂RI

[
D

(0)
nm +

∫
drVeff (r)QI

nm(r)

]
︸ ︷︷ ︸

=DI
nm

10

last term =
∑

ij

Λij〈φi|
∂

∂RI
(1 +

∑
nmI′

qnm|βI′
n 〉〈βI′

m |)|φj〉

=
∑
nm

qnm
∂ωI

nm

∂RI

11If the classical trajectory is continuous, the estimate of the posi-
tions at t + δt may be given by

r⃗i(t + δt) = 2⃗ri(t) − r⃗i(t − δt) + (δt)2a⃗i(t) + O[(δt)4]

with special attention to the treatment of the RI depen-
dence of the orthonormality constraints. For the electronic
wave functions we obtain

φi(t + ∆t) = 2φi(t) − φi(t − ∆t) − (∆t)2

µ
×δEtot

δφ∗
i

−
∑

j

Λij(t + ∆t)S(t)φj(t)


(44)

where S(t) means that the operator S is evaluated for ionic
positions RI(t). Similarly for the ionic coordinates,

RI(t + ∆t) = 2RI(t) − RI(t − ∆t) − (δt)
MI

×∂Etot

∂RI
−

∑
ij

Λij(t + ∆t)〈φi(t)|
∂S(t)
∂RI

|φj(t)〉


(45)

The orthonormality condition has to be imposed at each
time step[21]

〈φi(t + ∆t)|S(t + ∆t)|φj(t + ∆t)〉 = δij (46)

Fulfilling this constraint leads to the following matrix equa-
tion for the Lagrange multipliers λ = (∆t)2Λ∗(t + ∆t)/µ:

A + λB + B†λ† + λCλ† = 1, (47)

where a dagger indicates the Hermitian conjugate (be-cause
of the Hermiticity of S, λ = λ†) and where

Aij = 〈φ̄i|S(t + ∆t)|φ̄j〉,
Bij = 〈S(t)φi(t)|S(t + ∆t)|φ̄j〉, (48)
Cij = 〈S(t)φi(t)|S(t + ∆t)|S(t)φj〉

with

φ̄i = 2φi(t) − φi(t − ∆t) − (∆t)2

µ

δEtot(t)
δφ∗

i

(49)

12 In norm-conserving schemes the identity operator is
found in place of S, which leads to a simpler form of Eq.

The velocities do not appear in the above formula and they have been
eliminated by addition of the equations obtained by Taylor expansion
about r⃗i(t):

r⃗i(t + δt) = r⃗i(t) + δtv⃗i(t) +
(δt)2

2
a⃗i(t) +

(δt)3

6
b⃗i(t)...

r⃗i(t − δt) = r⃗i(t) − δtv⃗i(t) +
(δt)2

2
a⃗i(t) −

(δt)3

6
b⃗i(t)...

12

φi(t + ∆t) = φ̄i +
(∆t)2

µ

∑
j

Λij(t + ∆t)S(t)φj(t)

δij = 〈φi(t + ∆t)|S(t + ∆t)|φj(t + ∆t)〉

= 〈φ̄i +
(∆t)2

µ

∑
j

Λij(t + ∆t)S(t)φj(t)|S(t + ∆t)|

φ̄j +
(∆t)2

µ

∑
k

Λjk(t + ∆t)S(t)φk(t)〉

7



(47) presented in Ref. 22. In the ultrasoft PP case, the solu-
tion of Eq. (47) is somewhat problematic because Eq. (45)
is not a closed expression for RI(t + ∆t). The problem is
that Λ(t+∆t) appearing in Eq. (45) depends upon S(t+∆t)
through Eqs. (47)-(49), and thus upon RI(t + ∆t). Con-
sequently, in principle it is necessary to solve iteratively for
RI(t+∆t). We do this by first estimating the new Λ(t+∆t)
using two previous values,

Λ(0)
ij (t + ∆t) = 2Λij(t) − Λij(t − ∆t) (50)

and using this to find the new R(0)
I (t + ∆t), which is cor-

rect to O(∆t4). Then Eq. (47) is solved (see below) in
a similar way as in the norm-conserving case[22] giving a
new set of Λ(1)

ij (t + ∆t), with which the whole procedure is
repeated, and so on until convergence is achieved. Fortu-
nately, it turns out in practice that the ionic positions are
very well determined by Eq. (50), so that the procedure
almost always converges on the very first iteration. Thus,
the operations described above are generally executed only
once per time step.

In order to solve Eq. (47) , we generalize the iterative
procedure used in Ref. 22 because the unmodified procedure
does not always converge. In the norm-conserving case, the
matrix B converges to the identity matrix for vanishing δt.
This is not the case in the ultrasoft PP case. However,
when the matrix B is decomposed into Hermitian (Bh) and
anti-Hermitian (Ba) parts,

B = Bh + Ba (51)

it is straightforward to see that Ba vanishes in the limit of
small ∆t. The first iteration λ(0) can now be obtained from

λ(0)Bh + Bhλ(0) = 1 − A (52)

where the C-dependent term has been neglected because of
higher order in ∆t. Equation (52) can be solved exactly
introducing the unitary matrix U , which diagonalizes Bh,
U†BhU = D, where Dij = diδij . The solution to Eq. (47)
can be obtained by iterating

λ(n+1)Bh +Bhλ(n+1) = 1−A−λ(n)Ba−B†
aλ(n)−λ(n)Cλ(n)

(53)
where at every step the new λ(n+1) are obtained in the same
way as λ(0) had been obtained from Eq. (52).

When imposing the orthonormality condition (46), Eqs.
(47)-(49) require the calculation of an additional set of
scalar products of the type 〈βI

n|φi〉 as compared to the norm-
conserving case. However, the additional computational
overhead for these additional products is modest, since the
operations of the form 〈∂βI

n/∂RI |φi〉 are more numerous.

4 RECIPROCAL- AND REAL-
SPACE IMPLEMENTATION

4.1 Double-grid technique

4.2 Fourier interpolation scheme

5 APPLICATIONS

6 CONCLUSIONS

Because of the reduced number of plane waves required,
the present scheme based on ultrasoft PP’s makes it pos-
sible to extend first-principles molecular-dynamics simula-
tions to systems containing first-row elements and transition
metals, which could not be afforded using norm-conserving
pseudopotentials. It should allow the study of relaxation
processes in transition-metal molecules or defects, oxida-
tion processes, surface recon-structions, and the properties
of liquid and amorphous materials. The present formulation
also allows the com-bined use of ultrasoft pseudopotentials
for some of the atoms and standard norm-conserving pseu-
dopotentials for the other ones. Such an approach would
be particu-larly useful for the study of transition-metal or
first-row defects in semiconductors.

7 APPENDIX: ALTERNATIVE
DERIVATION OF IONIC
FORCES

Here we briefly give an alternative derivation of the expres-
sion for the ionic forces FI given in Eqs. (37) or (43) of Sec.
111A, and in particular the last term which corresponds to
the contribution from the orthonormality constraints. The
present derivation makes no reference to the Lagrangian for-
mulation, and is therefore more natural in the context of
direct minimization approaches such as conjugate-gradient
schemes.

In the main body of this manuscript, we took the point
of view that Eq. (1) specifies the total-energy functional
even when the φi depart from the constraints (5). Here we
introduce a different generalized functional

Ẽtot({φi}, {RI}) = Etot({φ̄i({φi,RI})}, {Rl}) (54)

where Etot is as given in Eq. (1), and the φ̄i are a new set
of S-orthonormal functions

|φ̄i〉 =
∑

j

(A−1/2)ji|φj〉 (55)

constructed from the φi via

Aij = 〈φi|S|φj〉 (56)

We imagine φ̄i = φi before the virtual displacement, and
calculate the partial derivative ∂Ẽtot/∂RI holding φi (but
not φ̄) constant. While the φi do not generally continue
to satisfy the constraints (5) after the virtual displacement,

8



the φ̄i do by construction, and therefore we can associate
the above derivative with the physical force,

FI = −∂Ẽtot

∂RI
(57)

We rewrite Eqs. and (1) and (4) in the form

Etot =
∑

i

〈φ̄i|H ion|φ̄i〉 + EHxc[n] (58)

and
n(r) =

∑
i

〈φ̄i|K(r)|φ̄i〉 (59)

Here

H ion = −∇2 + V ion
loc +∑

nm,I

[
D(0)

nm +
∫

drQI
nm(r)V ion

loc (r)
]
|βI

n〉〈βI
m|

(60)

K(r) = |r〉〈r| +
∑
nm,I

QI
nm(r)|βI

n〉〈βI
m| (61)

The notation is essentially that of Ref. 14. The mini-
mization of (A5) Ieads to the secular equation

H|φi〉 =
∑

j

ΛijS|φi〉 (62)

where Λij = 〈φi|H|φj〉 and the screened H is given in Eq.
(11).

Using the fact that Aij = δij before the virtual displace-
ment, we find

∂φ̄i(r)
∂RI

= −1
2

∑
j

〈φj |
∂S

∂RI
|φi〉φj(r) (63)

Now the contributions to ∂Etot/∂RI which do not involve
the RI dependence of the φ̄i are(

∂Ẽtot

∂RI

)
H

=
∑

i

〈φi|
dHion

dRI
|φi〉 +

∫
dr

δẼtot

δn(r)
dn(r)
dRI

=
∑

i

〈φi|
dHion

dRI
+

∫
drµHxc

dK(r)
dRI

|φi〉

(64)

while Eq.(63) leads to additional terms(
∂Ẽtot

∂RI

)
S

= −
∑
ij

〈φi|
∂S

∂RI
|φj〉 〈φj |Hion|φi〉

−
∫

drµHxc(r)
∑
ij

〈φi|
∂S

∂RI
|φj〉〈φj |K(r)|φi〉

= −
∑
ij

〈φi|
∂S

∂RI
|φj〉Λji (65)

After a few lines of algebra, it becomes evident that Eq.(64)
generates the 2nd, 3rd, and 4th terms of Eq.(43), while
Eq.(65) corresponds to the last term of Eqs.(37) or (43).
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