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1 Born model

The (self-)energy of the electric .eld is given by (See Appendix.)
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Now we assume the ion has point charge Ze with radius a and the solvent is the dielectric

continuum with dielectric constant ϵ. The electrostatic potential φ is
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The self-energy of the electric field becomes

U =
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drD · E =
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In vacuum, the electric field energy U0 is
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The solvation energy is given by the energy difference
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2 Modified Born model

(ref:Liquids, Solutions, and Interfaces: From Classical Macroscopic Descriptions to Modern

Microscopic Details (Topics in Analytical Chemistry by W. Ronald Fawcett )

In the modified Born model the inverse of the radius 1/a is replaced by 1/(a+ δ) . In the

mean sphere approximation (MSA) the delta is given by

δ = rs/λs (8)

Here rs is the radius of the solvent (hard sphere is assumed) and λs is given by

λ2
s(1 + λs)4 = 16ϵ (9)

From experiments 1/δ has the linear relation with the donor number (DN) and acceptor

number (AN) of the solvent.

1
δ

= a + bDN,
1
δ

= c + dAN (10)

Here DN is defined as the value of heat of reaction of the polar solvent with strong Lewis acid

SbCl5 when these 1:1 reactants are dissolved in 1,2-dichloroethane (Gutmann) and AN is the

relative value of the P31 NMR chemical shifts produced by a given solvent with a strong

Lewis base triethylphosphine oxide C2H5PO.(Mayer)

3 Appendix: Energy Conservation and Poynting Vector

divD = ρ (11)

divB = 0 (12)

rotE = −∂B
∂t

(13)

rotH = J +
∂D
∂t

(14)

The equation of motion of point charges is 1

mir̈i =
∫

dr {eiδ(r− ri(t))E + eiδ(r− ri(t))ṙi × B}

1δ関数で与えられる点電荷は、電場・磁場からローレンツ力を受ける。
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If we apply (
∑

i vi·) from the left, and the velocity is defined as vi = ṙi

∑
i

mivi · v̇i =
∑

i
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dr
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From the definition of the current and the Eq.(4).
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∫
dr(E · D + B · H)︸ ︷︷ ︸
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·n (19)

From above equations the Poynting vector S[= E×H] means the energy flux going out from

the system.
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