Novel Hydrophobic Molten Salts Based on Tetrakis[3,5-bis(trifluoromethyl)phenyl]borate Anion for Electrochemistry

of the Molten Salt|Water Interface

Seiichi Imakura, Naoya Nishi, Masahiro Yamamoto, and Takashi Kakiuchi

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

Room-temperature molten salts (RTMSs) that form a polarized RTMS|W interface, so far proposed, are composed of hydrophobic cations, such as tetraalkylammonium ions, and the hydrophobic anions, such as PF_6^- or bis(perfluoroalkylsulfonyl)imide anion ($C_nC_nN^-$). To extend the polarized potential window so that the transfer of more hydrophobic cations or of more hydrophobic anion from W to RTMS. RTMSs composed of more hydrophobic anions are required. In this study, we will show that the potential window can be extended by using the hydrophobic anion, tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (TFPB $^-$).

The cations used are 1-alkyl-3-methylimidazolium ($C_n mim^+$, n=2, 4, 5, 6, 7, 8, 10, 12), 1-dodecylpyridinium ($C_{12} Py^+$), tri-n-octylmethylammonium (TOMA $^+$), and 2-octadecylisoquinolinium ($C_{18} Iq^+$). The electrochemical voltammetric measurements of the RTMS|W interfaces were made by using capillary electrodes. The electrochemical cell is represented by

where C^+ and A^- denote the cation and anion comprising RTMS. The potential of the right-hand side terminal with respect to the left will be referred to as E.

The melting points of the TFPB based molten salts are shown in Table. 1. All $C_n mim$ TFPB used and $C_{12} Py TFPB$ show melting points higher than room temperature. TOMATFPB and $C_{18} Iq TFPB$ are found to be liquid at room temperature. The potential window of the RTMS|W interfaces are estimated by using cyclic voltammetry. The width of the potential window of TOMATFPB|W and $C_{18} Iq TFPB|W$ interfaces were measured to be $150\ mV$ and $300\ mV$ respectively. Compared with our previous results of the potential window of $C_{18} Iq C_2 C_2 N|W$ interface $250\ mV$, the potential window was $50\ mV$ extended by using TFPB anion.

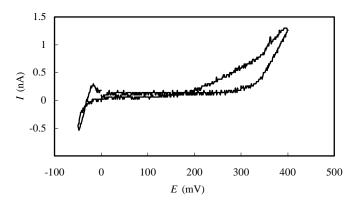


Fig 1. Cyclic voltammogram for the ion transfer across $C_{18}IqTFPB|W$ interface at 56 . Scan rate: 50 mV/sec.

Table 1. Melting points of TFPB-based molten salts

Cation	m.p. /
C ₂ mim ⁺	134.0
C_4mim^+	104.0
$C_5 mim^+$	82.0
$C_6 mim^+$	82.0
$C_7 mim^+$	69.0
$C_8 mim^+$	75.5
$C_{10}mim^{+}$	85.5
$C_{12}mim^{+}$	72.0
$C_{12}Py^+$	64.0
$TOMA^{+}$	< 30
$C_{18}Iq^+$	< 25