Long-range electrostatic interaction

• First we learn <u>what means "long range"</u>? It is very important concept for simulation. !!

We can cal. the coulomb interaction U_0 which involve the \uparrow anion (2 means int. to left and right is the same)

The interaction is the same for all 2N ions, then

$$U = \frac{1}{2} \sum_{i,j} \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}} = \frac{1}{2} 2NU_0 = -N \frac{e^2}{4\pi\epsilon_0} \frac{2\ln 2}{R}$$

Madelung constant

0

So if we simply use the cut-off (I. Benjamin use 3 nm cutoff) we may get not-accurate (sometimes wrong) answer!!

• Some special care should be taken to handle the long range interaction!!

Ewald method

I want to skip the formulation. If you like, please refer pp.35-42 of

http://www.users.kudpc.kyoto-u.ac.jp/~d54649/web_material/MDselfstudy.pdf

(Prof. Kano told me that one of the B4 students in his lab always say that she is happy when she handles equations!)

But One very important thing: short range part rect Coulomb sum (**R** space) long range part rest k-space sum (reciprocal space) (long range $r \Leftrightarrow$ short range k) 76 A.Y. Toukmaji, J.A. Board Jr. / Computer Physics Communications 95 (1996) 73-92 Charge magnitud Ewald Sum Direct sum Reciprocal sum

Fig. 2. The Ewald sum components of a one-dimensional point-charge system. The vertical lines are (+/-) unit charges, and the Gaussians are also normalized to unity.

In the Ewald method the electrostatic potential becomes

$$V_{\mathrm{I-I}} = \frac{e^2}{4\pi\epsilon_0} \left\{ \frac{1}{2} \frac{4\pi}{\Omega_{cell}} \sum_{\mathbf{G}\neq 0} \frac{1}{|\mathbf{G}|^2} e^{-\frac{|\mathbf{G}|^2}{4\kappa^2}} \underbrace{\left[\left[\sum_{i=1}^{N} Z_i \cos(\mathbf{G} \cdot \mathbf{r}_i) \right]^2 + \left[\sum_{i=1}^{N} Z_i \sin(\mathbf{G} \cdot \mathbf{r}_i) \right]^2 \right]}_{|S(\mathbf{G})|^2} + \frac{1}{2} \sum_i \sum_j Z_i Z_j \left[\sum_{\mathbf{R}} \frac{1}{x} \operatorname{erfc}(\kappa x) \right|_{x=|\mathbf{R}+\mathbf{r}_j-\mathbf{r}_i|} - \frac{2\kappa}{\sqrt{\pi}} \delta_{ij} - \frac{\pi}{\kappa^2 \Omega_{cell}} \right] \right\}$$

The practical points: we should give

I) cutoff of **G** sum

2) cutoff *R* sum

3) value

Don't worry! In DL-POLY these parameters are optimized inside the program, so just set,

ewald precision 1d-6

(If you don't like it, you can set "ewald sum k1 k2 k3")

MD Simulations of High Temperature Molten Salts

cf. S. Okazaki, Y. Miyamoto, and I. Okada, PRB, 45, 1992, 2055-2062 LiCI and LiCI-CsCI

Potential : Coulomb + Born-Huggins-Meyer (Tosi-Fumi potential)

$$\phi_{ij}(r) = \underbrace{\frac{z_i z_j e^2}{r}}_{\text{Coulomb}} + \underbrace{A_{ij} b \exp\left(\frac{\sigma_i^0 + \sigma_j^0 - r}{\rho}\right) - \frac{c_{ij}}{r^6} - \frac{d_{ij}}{r^8}}_{\text{BHM}}$$

	$\sigma_{+}^{0}(\text{pm})$	$\sigma_{-0}(\text{pm})$	$\rho(\text{pm})$	c++	с	c+-	<i>d</i> ++	d	d+-
LiF	81.6	117.9	29.9	0.073	14.5	0.8	0.03	17.0	0.6
LiCl		158.5	34.2		111.0	2.0		223.0	2.4
LiBr		171.6	35.3		185.0	2.5		423.0	3.3
LiI		190.7	43.0		378.0	3.3		1060.0	5.3
NaF	117.0		33.0	1.68	16.5	4.5	0.8	20.0	3.8
NaC1			31.7		116.0	11.2		233.0	13.9
NaBr			34.0		196.0	13.0		450.0	19.0
NaI			38.6		392.0	19.1		1100.0	31.0
KF	146.3		33.8	24.3	18.6	19.5	24.0	22.0	21.0
KC1			33.7		124.5	48.0		250.0	73.0
KBr			33.5		206.0	60.0		470.0	99.0
KI			35.5		403.0	82.0		1130.0	156.0
RbF	158.7		32.8	59.4	18.9	31.0		23.0	40.0
RbC1			31.8		130.0	79.0		260.0	134.0
RbBr			33.5		215.0	99.0		490.0	180 . 0 ́
RЫ			33.7		428.0	135.0		1200.0	280.0
CsF	172.0		28.2	152.0	19.1	52.0		23.0	78.0

Tosi-Fumi potential parameters for alkali-halides

b=0.338×10⁻¹⁹ J

c,dの単位はそれぞれ 10-79 Jm⁶, 10-99 Jm⁸ である。

添字の +, ー はそれぞれ陽イオン種,陰イオン種を示す。 A はポーリング定数で $A_{ij} = (z_i/n_i) + (z_j/n_j) + 1$ である。 ただし n_i, n_j はそれぞれのイオンの最外殻電子数である。 岡田勲 溶融塩の分子動力学シミュレーション 計算物理学と計算化学 8章 **I34-I57 KAIBUNDO**

LiCI molten salts: physical properties

無機均 LiCl	$\frac{T_{\rm m}}{\rm K}$ 883			LiCl	/ 10 ³ 1.884 - 4.328x1 金属デーグ	kg m ⁻³ 0 ⁻⁴ T (910-10 タブック	50 K)
						1.463 g cm ⁻³ fcc cubic lattice	at 973 K e 5.774 Å
化合物	T/K	η/mPas					
LiCl	900	1.40			solid-> LiCl	20 2.068	
	920	1.32				fcc cubic lattice 5.	14 Å
	940	1.25	融解塩	イオン	$D_{0}/10^{-7} \text{ m}^{2} \text{ s}^{-1}$	$\Omega/kl mol^{-1}$	温度 <i>T</i> / K
	960	1.19					
	980	1.13		1:1	1.22	10.00	0020.1022
	1000	1.08		LIT	1.23	18.00	883, ~1033
	1020	1.03					
	1040	0.989		CI-	0.71	18.43	883~1033
	1060	0.949		01	0.7	10.10	
	1080	0.912	·			•	
	1100	0.877		l i+ 1	$3D_8 m^2$	o-1 ot 07	JK

[G.J. Janz, "NIST Standard Reference. Database 27", (1991)]

Cl⁻ 0.7D-8 m²s⁻¹ at 973K

LiCI potential parameters

 $A_{ij}: \text{ Pauling parameter} \\ (?? = \frac{z_i}{n_i} + \frac{z_j}{n_j} + 1) \\ \text{Li+ Li+} \qquad \begin{array}{c} 2 & 1.25 \\ \text{Li+ Cl-} & 4/3 & 1 \\ \text{Cl- Cl-} & \frac{2/3}{2} & 0.75 \end{array}$

$$\begin{split} z_{\rm Li^+} &= 1, \ z_{\rm Cl^-} = -1 \\ n_{\rm Li^+} &= 2, \ n_{\rm Cl^-} = 6 \\ n_{\rm Li^+} &= 8??, \ n_{\rm Cl^-} = 8?? \end{split}$$

 $b = 0.338 \times 10^{-19} \text{J} = 20.35 \text{ kJ mol}^{-1}$ $\sigma_{\text{Li}^+}^0 = 0.816 \text{ Å}, \ \sigma_{\text{Cl}^-}^0 = 1.585 \text{ Å}, \ \rho_{\text{LiCl}} = 0.342 \text{ Å}$ c / 10⁻⁷⁹ J m⁶ d 10⁻⁹⁹ J m⁸ Li⁺ Li⁺ 0.073 0.03 Li⁺ Cl⁻ 2.0 2.4 Cl⁻ Cl⁻ 111.0 223.0

 $\begin{array}{l} 1.0\times10^{-79}~{\rm J}~{\rm m}^{6}=1.0\times10^{-19}{\rm J}~{\rm \AA}^{6}=60.221~{\rm kJ}~{\rm mol}^{-1}~{\rm \AA}^{6}\\ 1.0\times10^{-99}~{\rm J}~{\rm m}^{8}=1.0\times10^{-19}{\rm J}~{\rm \AA}^{8}=60.221~{\rm kJ}~{\rm mol}^{-1}~{\rm \AA}^{8} \end{array}$

DL-POLY parameters (Please check the values!)

key	potential type		Varia	bles	(1-5))	functional form
\mathbf{bhm}	Born-Huggins -Meyer	A	B	σ	C	D	$U(r) = A \exp[B(\sigma - r)] - \frac{C}{r^6} - \frac{D}{r^8}$

	A kJ mol⁻¹	B Å⁻¹	О Å	C kJ mol⁻¹ Å ⁶	D kJ mol ⁻¹ Å ⁸
Li ⁺ - Li ⁺	25.44	2.924	1.632	4.40	1.81
Li ⁺ - Cl ⁻	20.35	2.924	2.401	120.44	144.53
CI CI-	15.26	2.924	3.170	6684.57	13429.36

start configuration NaCl structure: Li fcc + 1-basis Li-Cl

256 Li cation + 256 Cl anion

CONFIG

LiCl Tosi-Fumi coulomb 973 K 2 L 23.0949137651 .0000000000 .0000000000 .0000000000 23.0949137651 .0000000000 .0000000000 .0000000000 23.0949137651 Li I -11.5474568825 -11.5474568825 -11.5474568825 -9.2381425951 2.3127320988 -10.6165397575 .0000000000 .0000000000 .0000000000 CI 2 -8.6605926619 -11.5474568825 -11.5474568825 -3.8343057133 3.3861251245 -.2857354079 .0000000000 .0000000000 .0000000000 Li 3 -8.6605926619 -8.6605926619 -11.5474568825 -2.4627326782 -10.9204233616 -10.5006199708 .0000000000 .0000000000 .0000000000 CI 4 -11.5474568825 -8.6605926619 -11.5474568825 .3993300091 8.0160734289 -5.3483995294 .0000000000 .0000000000 .0000000000 Li 511 5.7737284413 8.6605926619 8.6605926619 10.1377456936 -13.0366025747 9.8671728482 .0000000000 .0000000000 .0000000000 CI 512 8.6605926619 8.6605926619 8.6605926619 .7285484771 1.4579165760 .5758900933 .0000000000 .0000000000 .0000000000

FIELD

```
LiCI Tosi-Fumi+Ewald
units k
molecules I
LiCl
nummols 256
atoms 2
   Li 6.941
                1.00
   CI 35.453
                -1.00
finish
vdW 3
                  25.44 2.924 1.632
                                               1.81
   Li
        Li bhm
                                        4.40
   Li
        CI bhm
                   20.35 2.924 2.401
                                        120.44 144.53
   CI
                    15.26 2.924 3.170 6684.57 13429.36
         CI bhm
```

close

CONTROL

LiCl Tosi-Fumi+Ewald units k molecules I LiCl nummols 256 atoms 2 Li 6.941 1.00 CI 35.453 -1.00 finish vdW 3 Li Li bhm 25.44 2.924 1.632 4.40 1.81 Li CI bhm 20.35 2.924 2.401 120.44 144.53 CI CI bhm 15.26 2.924 3.170 6684.57 13429.36 close

You can download the three input files and the CONFIG generation program DLPOLY_LiClinput.f from /home/d/d54649/DL_POLY/data_LiCl_TosiFumiEwald

Please sftp d54649@sakura.kudpc.kyoto-u.ac.jp

results

Approximate 3D Diffusion coefficients (m²/s)

ion	D	exp
Li+	9.0 x10^-9	Li+ 1.3D-8 m ² s ⁻¹ at 973K
Cl-	7.5 x10^-9	Cl ⁻ 0.7D-8 m ² s ⁻¹ at 973K

So what's ? ===> It seems very easy to run the simulation!! ===> *The analysis of the calculation results are very important.* ===> Thermal average, space-time correlation and so on.

mixing system

M.Y. did not cal. this system. Please do it by yourself if you have an interest.

• LiCI-KCI case ?

• Li-K?

FICURE 68. Temperature composition phase diagram for KCI-LiCI.

S. Zhemchuzhngi and F. Rambath, Izv. Spb. Politekhnicheskogo Institute, 12, 349 (1909); Zh. Russ, Fiz.-Khim. Ova Chast Fiz. 41, 1785 (1909); S. Zemezuzny and F. Rambach, Z. Anorg. Chem., 65, 403 (1910).

TABLE 393. KCI-LiCI: Specific conductance (ohm-1 cm-1)

Mol percent LiCl												
Т	100	81.77	70,36	58.80	40.45	19.96	-0					
1 670 690 710 730 750 770 790 810 839 850 870 839 910 930 910 930 950 970 900 1010 1030 1050 1070 1050 1110 1150 1170	5.819 5.940 6.054 6.161 6.261 6.353 6.439 6.517	3.150 3.271 3.386 3.495 3.599	1.976 2.133 2.290 2.416 2.541 2.556 2.760 2.854	1 997 1.360 1.490 1.615 1.737 1.854 1.967 2.076 2.181 2.281	1,890 1,992 2,087 2,177 2,260 2,337 2,408 2,472	2,109 2,176 2,239 2,296 2,354 2,406 2,454	2,225 2,279 2,379 2,376 2,420 2,460					
1130	1		1	1	1		2.997					

TABLE 395. KCI-LiCl: Density (g cm-8)

	Mol percent LiCl												
T	100	90	80	70	60	50	40	30	20	10	0	59.5	
720 740 760 780 800 840 860 880 900 920 940 960 980 1000 1020 1040 1060 1086 1100 1120 1140 1180 1200	1.496 1.487 1.478 1.469 1.460 1.451 1.443 1.434	1 552 1.542 1.533 1.523 1.514 1.505 1.496	1.598 1.588 1.578 1.558 1.558 1.548 1.539	1.622 1.612 1.602 1.591 1.581 1.571 1.562	1.646 1.636 1.625 1.615 1.604 1.594 1.583 1.573	1.627 1.616 1.605 1.595 1.584 1.574 1.563 1.553 1.543	1.595 1.584 1.573 1.562 1.552 1.541 1.531 1.521	1.583 1.572 1.561 1.550 1.539 1.528 1.518 1.507 1.497	1.548 1.536 1.525 1.514 1.503 1.492 1.481 1.471	1.534 1.522 1.510 1.499 1.487 1.476 1.465 1.454	1.520 1.507 1.495 1.483 1.471 1.469 1.447 1.436	1.636 1.626 1.615 1.605 1.594 1.584 1.574 1.564	

JANZ ET AL.

	Mol percent LiCl											
· T	100	80	60	50	40	30	20	0				
<i>T</i>	100 1,60 1,54 1,49 1,43 1,38 1,29 1,26 1,20 1,17 1,13 1,10 1,07 1,05 1,02 1,01 0,99 0,98	80 1.40 1.36 1.32 1.28 1.24 1.21 1.18 1.13 1.12 1.09 1.06 1.04 1.01 0.99 0.97 0.93	60 1.46 1.42 1.38 1.33 1.29 1.25 1.22 1.18 1.15 1.12 1.09 1.06 1.03 1.01 0.99 0.97 0.95 0.92	50 1.35 1.31 1.27 1.23 1.20 1.17 1.13 1.00 1.08 1.05 1.02 1.00 0.97 0.95 0.93	40 1.45 1.40 1.36 1.32 1.28 1.24 1.21 1.18 1.14 1.11 1.00 1.06 1.03 1.01 0.96	30 1.47 1.42 1.38 1.34 1.31 1.27 1.24 1.20 1.17 1.14 1.19 1.09 1.06 1.04 1.01 0.99 0.97	20 1.36 1.32 1.28 1.24 1.21 1.18 1.14 1.11 1.09 1.06 1.03 1.01	0 1.04 1.01 0.59 0.96 0.94				
1120 1130 1140 1150						-		0.96 0.94 0.92 0.89				

TABLE 398. KCl-LiCl: Viscosity (cp)

TABLE 401.	KCI-LiCI:	Surface	tension	(d	yn em ⁻¹)
------------	-----------	---------	---------	----	---------------------	---

				B	fol percent Li	Cl				
Т	90	79	69	58	50	40	30	22	15	10
660 680 700 720 740 760 780 800 820 840 860 880 900 920 940 940 960 980 1000 1020 1040 1060 1080	123.96 122.61 121.25 119.90 118.56 117.20 115.85 114.50 113.15 111.80	123.88 122.46 121.04 119.62 118.20 116.78 115.36 113.94 112.52 111.10	127.30 125.74 124.17 122.61 121.04 119.47	135.22 133.57 131.92 130.28 128.63 126.98 125.33 123.69 122.04 120.39 118.75 117.10 115.45 113.81	124.31 122.70 121.08 119.46 117.85 116.23 114.61 113.00 111.38 109.77 108.15 106.53 104.92	115.09 113.40 111.71 110.02 108.33 106.64 104.95 103.25	110.97 109.23 107.49 105.75 104.01 102.28 100.54 98.80	106.40 104.57 102.73 100.90 99,07	102.95 101.25 99.56 97.86	101.03 99.33 97.71

J. Phys. Chem. Ref. Data, Vol. 4, No. 4, 1975

無機塩	T _m	/ 10 ³ kg m ⁻³
	K	LiCl 1.884 - 4.328x10 ⁻⁴ T (910-1050 K)
LiCl	883	L = 100 - 1000 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -
KCl	1043	金属データブック

化合物	T/K	η/mPa s			
LiCl	900 920	1.40 1.32			
	940 960	1.25 1.19	化合物 KCl	$T / { m K}$ 1110	η / mPa s 0.938
	980	1.13		1120	0.908
	1000	1.08		1130	0.887
	1020	1.03		1140	0.866
	1040	0.989		1150	0.847
	1060	0.949		1160	0.828
	1080	0.912			
	1100	0.877			

[G.J. Janz, "NIST Standard Reference. Database 27", (1991)]

融解塩	イオン	D0/10-7 m2 s-1	Q/kJ mol-I	温度 T/ K
KCI	K+	1.80	28.79	1070~1260
	CI-	1.80	29.83	1065~1260
LiCl	Li+	1.23	18.00	883~1033
	CI-	0.71	18.43	883~1033

For the mixing rule, please refer to B. Larson et al. Mol. Phys. 1973, 26, 1521-1532